Volume 45 | Number 2 | Year 2017 | Article Id. IJMTT-V45P511 | DOI : https://doi.org/10.14445/22315373/IJMTT-V45P511
In this paper we prove that the uniform convergence of a sequence (ƒn) of analytic representations for functions ƒn in DLP on suitable sets implies convergence of the sequence (ƒn) in DLP.
[1]. Bremerman, H., Raspredelenija, kompleksnije permenenije I preobrazovanija Furje, Izdatelstvo ‘’Mir’’ Moskva 1968.
[2]. Beltrami, E.J., Wohlers M.R., Distributions and the boundary values of analytic functions. Academic Press, New York, 1966.
[3]. Carmichael R., Mitrovic, D., Distributions and analytic functions, New York, 1989.
[4]. Dimovski P., Pilipovic S., Vindas J., New distribution spaces associated to translation-invariant Banach spaces, Monatsh Math 177, p. 495- 515, 2015
[5]. Jantcher L., Distributionen, Walter de Gruyter Berlin, New York, 1971.
[6]. Rudin W., Functional Analysis, Mc Graw-Hill, Inc., 1970.
Vasko Reckovski, Vesna Manova Erakovikj, Egzona Iseni, "Convergence of sequences of functions in DLP and DLP,h, 1£<¥ through their analytic representations," International Journal of Mathematics Trends and Technology (IJMTT), vol. 45, no. 2, pp. 62-70, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V45P511