Volume 46 | Number 1 | Year 2017 | Article Id. IJMTT-V46P501 | DOI : https://doi.org/10.14445/22315373/IJMTT-V46P501
The aim of this paper is to study idempotents in the matrix ring M3(R[x]).
[1] P. Kanwar, A. Leroy, and J. Matczuk, Idempotents in ring extensions, J. Algebra 389 (2013), 128-136.
[2] P. Kanwar, A. Leroy, and J. Matczuk, Clean elements in polynomial rings, Noncom- mutative Rings and their Applications, Contemporary Mathematics, Amer. Math. Soc. 634 (2015), 197-204.
[3] P. Kanwar, M. Khatkar, and R. K. Sharma, Idempotents and Units of Matrix Rings over Polynomial Rings, Int. Electron. J. Algebra (To appear).
[4] P. Kanwar, R. K. Sharma, and P. Yadav, Lie regular generators of general linear groups II, Int. Electron. J. Algebra Volume 13 (2013), 91-108.
[5] C. Lanski, Some remarks on rings with solvable units, Ring Theory, (Proc. Conf., Park City, Utah, 1971), Academic Press, New York (1972), 235-240.
[6] B. R. McDonald, Elementary Number Theory, Marcel Dekker, New York. (1984).
[7] M. Mirowicz, Units in group rings of innite dihedral group, Canad. Math. Bull. Vol- ume 34(1)(1991), 83-89.
[8] W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. Volume 229 (1977), 269-278.
[9] W. K. Nicholson, Strongly clean rings and Fitting's lemma. Comm. Algebra Volume 27 (1999), 3583-3592.
[10] R. K. Sharma, P. Yadav, and P. Kanwar, Lie regular generators of general linear groups, Comm. Algebra Volume 40 (2012), 1304-1315.
[11] L. Wiechecki, Group algebra units and tree actions, J. Algebra 311 (2007), 781-799.
Meenu Khatkar, "Idempotents of M3(R[x])," International Journal of Mathematics Trends and Technology (IJMTT), vol. 46, no. 1, pp. 1-4, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V46P501