Volume 46 | Number 1 | Year 2017 | Article Id. IJMTT-V46P509 | DOI : https://doi.org/10.14445/22315373/IJMTT-V46P509
Claudia Narumi Takayama Mori, Estaner Claro Romao, "Numerical Simulation by Galerkin Method of 2D Nonlinear Convection-Diffusion," International Journal of Mathematics Trends and Technology (IJMTT), vol. 46, no. 1, pp. 43-49, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V46P509
[1] Campos, M. D.; Romão, E. C.. A High-Order Finite-Difference Scheme with a Linearization Technique for Solving of Three-Dimensional Burgers Equation. Computer Modeling in Engineering & Sciences (Print), v. 103, p. 139-154, 2014.
[2] Srivastava, V. K.; Tamsir, M.; Bhardwaj, U.; Sanyasiraju, Y. V. S. S.. Crank-Nicolson Scheme for Numerical Solutions of Two-dimensional Coupled Burgers’ Equations. Int. J. Sci. & Eng. Research, vol. 2, no. 5, pp. 1-7, 2011.
[3] Bahadir, A. R.. A fully implicit finite-difference scheme for two dimensional Burgers equations. Appl. Math. Comput., vol. 137, pp. 131-137, 2003.
[4] Smith, G. D.. Numerical solution of partial differential equations: finite difference method, third ed., Clarendon Press, 1998.
[5] Campos, M. D.; Romão, E. C.; Moura, L. F. M.. A Finite-Difference Method of High-Order Accuracy for the Solution of Transient Nonlinear Diffusive Convective Problem in Three Dimensions. Case Studies Thermal Eng., vol. 3, pp. 43-50, 2014.
[6] Campos, M. D.; Romão, E. C.; Moura, L. F. M.. Linearization Technique and its Application to Numerical Solution of Bidimensional Nonlinear Convection Diffusion, Equation. Appl. Math. Sci., vol. 8, n. 15, pp. 743-750, 2014.
[7] Deblois, B. M.. Linearizing convection terms in the Navier-Stokes equations. Comp. Meth. Appl. Mech. Eng., vol. 143, no. 3-4, pp. 289-297, 1997.
[8] Reddy, J. N.. An introduction to the finite element method, 3ª Edition, McGraw-Hill, 2013.
[9] Romão, E. C.. Efficient Alternative for Construction of the Linear System Stemming from Numerical Solution of Heat Transfer Problems via FEM. Mathematical Problems in Engineering (Print), v. 2016, p. 1-7, 2016.
[10] Mello, F. M., Castanheira, P.. Elementos Finitos – Formulação Residual de Galerkin, Edição Sílabo Ltda., 1ª edição, Lisboa, 2010. (in portuguese).