Volume 46 | Number 2 | Year 2017 | Article Id. IJMTT-V46P511 | DOI : https://doi.org/10.14445/22315373/IJMTT-V46P511
Dr. ManjuBala, "Stability of Stratified Compressible Shear Flow," International Journal of Mathematics Trends and Technology (IJMTT), vol. 46, no. 2, pp. 53-61, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V46P511
[1]. Eckhoff, S. Khut and Storesletten, L., J. Fluid Mech. 89, 401, (1978)
[2]. Ellingsen, T. and Palm, E., Phys. Fluids 18, 487, (1975).
[3]. Falsaperla, P. and Mulone, G., Stability in the rotating Bfenard problem with Newton-Robin and fixed heat flux boundary conditions. Mechanics Research Communications, 37(1),122-128, (2010).
[4]. Gans, R.F., J. Fluid Mech. 68, 413, (1975)
[5]. Hamman, C.W., Kelwick, J.C., & Kirby, R.M., On the Lamb vector divergence in Navier-Stokes flows, J. Fluid Mech. 610 261-284. (2008).
[6]. Howard, L. N., Stud. Appl. Math. 52, 39, (1973).
[7]. Howard, L. N. And Gupta, A.S., J. Fluid mech. 14, 463, (1962).
[8]. Landehl, M. T., J. Fluid Mech. 98, 243, (1980).
[9]. Rudraiah, N., Effect of porous lining on reducing the growth rate of Rayleigh-Taylor instability in the inertial fusion energy target. Fusion Sci., and tech. 43, 307-311, (2003).
[10]. Sharma, V. and Rana, G.C., “Thermosolutal Instability of Rivlin-Ericksen Rotating Fluid in the Presence of Magnetic Field and Variable Gravity Field in Porous Medium”, Proc. Nat. Acad. Sci. India, Vol. 73, No. A, (2003), 1.
[11]. Storesletten, L., Quart. J. Mech. Appl. Math. 35, 326, (1982).
[12]. Storesletten, L. and Barletta, A., Linear instability of mixed convection of cold water in a porous layer induced by viscous dissipation. Int. J. of Thermal Sciences, 48, 655-664, (2009).
[13]. Straughan, B., Stability and wave motion in porous media., volume 165 of Ser. In Appl. Math. Sci. Springer, New-York, (2008).
[14]. Sunil and Mahajan, A., A nonlinear stability analysis for rotating magnetized ferrofluid heated from below. Appl. Math. Computation, 204(1), 299-310, (2008a). ISSN 0096-3003.
[15]. Straughan, E., Stability and wave motion in porous media., volume 165 of Ser. In Appl. Math. Sci. Springer, New-York, (2008).
[16]. Straughan, B., The Energy Method, Stability, and Nonlinear Convection, (2nd ed.), volume 91 of Ser. In Appl. Math. Sci. Springer, New-York, (2004).
[17]. Tillack, M.S., & Morley, N.B., Magnetohydrodynamics, 14-th Editionm. (1998).
[18]. Trefethen, L. N., Trefethen, A.E., Reddy, S.C. & Driscoll, T.A., Hydrodynamic stability without eigenvalues. Science 261, 578-584, (1993).
[19]. Warran, F.W., J. Fluid Mech. 68, 403, (1975).