Volume 46 | Number 2 | Year 2017 | Article Id. IJMTT-V46P514 | DOI : https://doi.org/10.14445/22315373/IJMTT-V46P514
Normally, Minimal Spanning Tree algorithm is used to find the shortest route in a network. Neutrosophic set theory is used when incomplete, inconsistancy and indeterminacy occurs. In this paper, Bipolar Neutrosophic Numbers are used in Minimal Spanning Tree algorithm for finding the shortest path on a network when the distances are inconsistant and indeterminate and it is illustrated by a numerical example.
[1] Atanassov. K, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, 1986, pp. 87-96.
[2] Broumi. S, Bakali. A, Talea. M and Smarandache. F, Computation of Shortest Path Problem in a Network with Single Valued Neutrosophic Number Based on Ranking Method, 2016 (submitted).
[3] Broumi. S, Bakali. A, Talea. M and Smarandache. F, Shortest Path Problem Under Interval Valued Neutrosophic Setting, 2016 (submitted).
[4] Broumi. S, Bakali. A, Talea. M and Smarandache. F, Ali. M, Shortest Path Problem Under Bipolar Neutrosophic Setting, 2016 (submitted).
[5] Broumi. S, Bakali. A, Talea. M and Smarandache. F, An Introduction to Bipolar Single Valued Neutrosophic Graph Theory, Applied Mechanics and Materials, vol.841, 2016, pp.184-191.
[6] Broumi. S, Smarandache. F, Talea. M and Bakali. A, Decision-Making Method Based On the Interval Valued Neutrosophic Graphs, FTC 2016-Future Technologies Conference 2016, In press.
[7] Broumi. S, Talea. M, Bakali. A and Smarandache. F, "On Bipolar Single Valued Neutrosophic Graphs," Journal of New Theory, N11, 2016, pp.84-102.
[8] Broumi. S, Talea. M, Smarandache. F and Bakali. A, Single Valued Neutrosophic Graphs: Degree, Order and Size. IEEE World Congress on Computation Intelligence, 2016, 8 pages, in press.
[9] Deli. I, Ali. M, Smarandache. F, Bipolar neutrosophic sets and their application besed on multi- criteria decision making problems, Advanced Mechatronic Systems (ICAMechS), 2015 International Conference, 2015, pp.249-254.
[10] Hamdy A. Taha, Operations Research: An Introduction, Eighth Edition.
[11] Jayagowri and Geetha Ramani. G, Using Trapezoidal Intuitionistic Fuzzy Number to Find Optimized Path in a Network, Volume 2014, Advances in Fuzzy Systems, 2014, 6 pages.
[12] Kumar. G, Bajaj. R. K and Gandotra. N, Algorithm for shortest path problem in a network with interval valued intuitionistic trapezoidal fuzzy number,Procedia Computer Science 70, 2015, pp.123-129.
[13] Kumar. A and Kaur. M, A New Algorithm for Solving Shortest Path Problem on a Network with Imprecise Edge Weight, Applications and Applied Mathematics, Vol. 6, Issue 2, 2011, pp.602-619.
[14] Kumar. A and Kaur. M, Solution of fuzzy maximal ow problems using fuzzy linear program- ming, World Academy of Science and Technology. 87, 2011, pp.28-31.
[15] Majumder. S and Pal. A, Shortest Path Problem on Intuitionstic Fuzzy Network, Annals of Pure and Applied Mathematics, Vol. 5, No. 1, November 2013.
[16] Ngoor. A and Jabarulla. M. M, Multiple labeling Approch For Finding shortest Path with Intuitionstic Fuzzy Arc Length, International Journal of Scientific and Engineering Research, V3, Issue 11, 2012, pp.102-106.
[17] Smarandache. F, A geometric interpretation of the neutrosophic set - A generalization of the intuitionistic fuzzy set, Granular Computing (GrC). 2011 IEEE International Conference, 2011, pp.602-606.
[18] Smarandache. F, Neutrosophic set - A generalization of the intuitionistic fuzzy set, Granular Computing, 2006 IEEE International Conference, 2006, pp. 38-42.
[19] Smarandache. F, Symbolic Neutrosophic Theory, Europanova asbl, Brussels, 2015, 195p.
[20] Smarandache. F, Types of Neutrosophic Graphs and neutrosophic Algebraic Structures together with their Application in Technology," seminar, Universitatea Transilvania din Brasov, Facultatea de Design de Produs si Mediu, Brasov, Romania 06 June 2015.
[21] VasanthaKandasamy, Ilanthenral. K and Smarandache. F, Neutrosophic graphs: A New Dimension to Graph Theory. Kindle Edition. USA. 2015, 127p.
[22] Wang. H, Smarandache. F, Zhang. Y and Sunderraman, Single valued Neutrosophic Sets, Multisspace and Multistructure 4, 2010, pp.410-413.
[23] Zadeh. L, Fuzzy sets, Inform and Control, 8, 1965, pp.338-353.
[24] http://fs.gallup.unm.edu/NSS.
M. Mullai, S. Broumi, A. Stephen, "Shortest Path Problem by Minimal Spanning Tree Algorithm using Bipolar Neutrosophic Numbers," International Journal of Mathematics Trends and Technology (IJMTT), vol. 46, no. 2, pp. 79-87, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V46P514