Volume 46 | Number 2 | Year 2017 | Article Id. IJMTT-V46P518 | DOI : https://doi.org/10.14445/22315373/IJMTT-V46P518
In this paper we study η- Ricci Solitions in α-Sasakian Mani- folds. It is shown that a symmetric parallel second order covariant tensor in a α-Sasakian manifold is a constant multiple of the metric tensor. In the last, we discuss η- Ricci Solitions in conharmonically at α-Sasakian manifold.
[1] A.M. Blaga,: η-Ricci solitions on Lorentzian para-Sasakian manifolds, Filomat 30(2); 489 - 496(2016):
[2] A.M. Blaga,: η-Ricci solitions on para Kenmotsu manifolds. Balkan J, Geom. Appl. 20(1); 1 - 13(2015):
[3] A.M. Blaga,: M. Crasmareanu, "Torse-forming η-Ricci solitions in almost paracontact _Einstein geometry, Filomat (2016, to apper).
[4] C.L. Bejan, M. Crasmareanu,: Second order parallel tensors and Ricci solitions in
3-dimensional normal paracontact geometry, Ann. Glob. Anal. Geom. doi.:10:1007=s10455- 014 - 9414 - 4:
[5] C. Calin, M. Crasmareanu,: Eta-Ricci solitions on Hopf hypersurfaces in complex space forms, Revue Roumaine de Mathematiques pures et appliques 57(1), 55 - 63(2012):
[6] G. Calvaruso, D. Perrone,: Geometry of H-paracontact metric manifolds (2013), arXiv:1307:7662v1:
[7] G. Calvaruso, A. Zaeim,: A complete classi_cation of Ricci and Yamabe solitions of non- reductive homogeneous 4-space, J. Geom. Phys.80; 15 - 25(2014):
[8] G. Calvaruso, D. Perrone,: Ricci solitions in three-dimensional paracontact geometry (2014), arXiv:1407:3458v1:
[9] H.D. Cao,: Recent progress on Ricci solitions Adv. Lec. Math. (ALM) 11; 1 - 38(2009), arXiv:0908:2006v1:
[10] J.T. Cho, M. Kimura,: Ricci solitions and real hypersurfaces in a complex space form, Tohoku Math. J. 61(2); 205 - 212(2009):
[11] I. Gurupadavva, C.S. Bagewadi,: Ricci solitions in α-Sasakian manifolds, Interna- tional Scholarly Research Network, ISRN Geometry, Vol.2012, Article ID 421384, doi:10:5402=2012=421384:
[12] R.S. Hamilton,: Three-manifolds with positive Ricci curvature, Journal of Di_erential geom- etry, Vol. 17, no.2, pp. 255 - 306, 1982:
[13] R.S. Hamilton,: The Ricci ow on surfaces, In:Mathematics and general relativity (Santa cruz, CA, 1986), Contemp Math. Vol. 71, pp. 237 - 262, Amr. Math. Soc., Providence (1988).
[14] R. Pina, K. Tenenblat,: On solutions of the Ricci curvature and the Einstein equation, Isr. J. Math., 171; 61 - 76(2009):
[15] D.G. Prakasha,: Torseforming vector _elds in a 3-dimensional para-Sasakian manifold, Sci. Stud. Res. Ser. Math. Inform. 20(2); 61 - 66(2010):
[16] K. Yano, M. Kon,: Structures on Manifolds, Series in Pure Mathematics, Vol. 3, Word Scienti_c, Singapore (1984):
[17] R. Sharma,: Second order parallel tensor in real and complex space forms, Internat. J. Math. Math. Sci. 12; 4(1989); 787 - 790:
[18] M. Crasmareanu,: Parallel tensors and Ricci Solitions in N(k)- quasi Einstein manifolds, Indian J. Appl. Math. 43; 4 (2012):
[19] M. Okumura, Some remarks on space with a certain contact structure, Tohoku Math.J. (2)14(1962); 135 - 145:
[20] S. Sasaki, Almost-contact manifolds Part I Lecture Notes, Mathematical Institue, Tohoku University, 1965.
Shyam Kishor, Puneet Kumar Gupt, Abhishek Singh, "Certain Results on η-RICCI Solitions in α-Sasakian Manifolds," International Journal of Mathematics Trends and Technology (IJMTT), vol. 46, no. 2, pp. 104-110, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V46P518