References
[1] Bashirov, M. Riza, On Complex multiplicative differentiation, TWMS J. App. Eng. Math. 1(1)(2011), 75-85.
[2] A. E. Bashirov, E. Misirli, Y. Tandoǧdu, A. Özyapici, On modeling with multiplicative differential equations, Appl. Math. J. Chinese Univ., 26(4)(2011), 425-438.
[3] A. E. Bashirov, E. M. Kurpinar, A. Özyapici, Multiplicative Calculus and its applications, J. Math. Anal. Appl., 337(2008), 36-48.
[4] F. Başar,, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, xi+405 sf., Istanbul-2012, ISBN:978-1-60805-420-6.
[5] A. F. Çakmak, F. Başar, On Classical sequence spaces and non-Newtonian calculus, J. Inequal. Appl. 2012, Art. ID 932734, 12pp.
[6] Richard G. Cooke, Infinite Matrices and Sequence Spaces, Macmillan and Co., London, 1950. U.
[7] Kadak, Determination of Köthe-Toeplitz duals over non-Newtonian Complex Field, The Scientific World Journal, Volume 2014, Article ID 438924, 10 pages.
[8] D. J. H. Garling, TheThe 𝛽- and 𝛾-duality of sequence spaces, Proc. Camb. Phil. Soc., 63(1967), 963-981.
[9] M. Grossman, Bigeometric Calculus: A System with a scale-Free Derivative, Archimedes Foundation, Massachusetts, 1983.
[10] M. Grossman, R. Katz, Non-Newtonian Calculus, Lee Press, Piegon Cove, Massachusetts, 1972.
[11] J. Grossman, M. Grossman, Katz, The First Systems of Weighted Differential and Integral Calculus, University of Michigan.
[12] Jane Grossman,Meta-Calculus: Differential and Integral, University of Michigan.
[13] K. Boruah and B. Hazarika, Application of Geometric Calculus in Numerical Analysis and Difference Sequence Spaces,
Journal of Mathematical Analysis and Applications, SCI, Elsevier Publication 449(2)(2017), 1265-1285.
[14] K. Boruah and B. Hazarika, On Some Generalized Geometric Difference Sequence Spaces, Proyecciones Journal of Mathematics (accepted).
[15] K. Boruah and B. Hazarika, Some Basic Properties of 𝐺 −Calculus and Its Applications in Numerical Analysis, Numerical Functional Analysis and Optimization (under review).
[16] K. Boruah and B. Hazarika, 𝐺 −Calculus, TWMS Journal of Applied and Engineering Mathematics (accepted), ESCI.
[17] K. Boruah and B. Hazarika, Solution of Bigeometric-Differential Equations by Numerical Methods, Numerical Functional Analysis and Optimization (under review).
[18] K. Boruah and B. Hazarika, Bigeometric Integral Calculus, TWMS Journal of Applied and Engineering Mathematics (accepted), ESCI.
[19] H. Kizmaz, On Certain Sequence Spaces, Canad. Math. Bull., 24(2)(1981), 169-176.
[20] G. Köthe, Toplitz, Vector Spaces I, Springer-Verlag, 1969.
[21] G. Köthe, O. Toplitz, Linear Raumemitunendlichenkoordinaten und Ring unendlichenMatrizen, J. F. Reine u. angew Math., 171(1934), 193-226.
[22] I.J. Maddox, Infinite Matrices of Operators, Lecture notes in Mathematics, 786, Springer-Verlag(1980).
[23] MikailEt and RifatÇolak, On Some Generalized Difference Sequence Spaces, Soochow J. Math., 21(4), 377-386.
[24] D. Stanley, A multiplicative calculus, Primus IX 4 (1999) 310-326.
[25] S. Tekin, F. Başar, Certain Sequence spaces over the non-Newtonian complex field, Abstr. Appl. Anal., 2013. Article ID 739319, 11 pages.
[26] CengizTürkmen and F. Başar, Some Basic Results on the sets of Sequences with Geometric Calculus, Commun. Fac. Fci. Univ. Ank. Series A1. Vol G1. No 2(2012) Pages 17-34.
[27] A. Uzer, Multiplicative type Complex Calculus as an alternative to the classical calculus, Comput. Math. Appl., 60(2010), 2725-2737.
[28] Ug ur Kadak and Hakan Efe, Matrix Transformation between Certain Sequence Spaces over the Non-Newtonian Complex Field,Hindawi Publishing Corporation, The Scientific World Journal, Volume 2014, Article ID 705818, 12 pages.