Volume 46 | Number 3 | Year 2017 | Article Id. IJMTT-V46P521 | DOI : https://doi.org/10.14445/22315373/IJMTT-V46P521
This paper aims to apply the Fourth Order Finite Difference Method to solve the one-dimensional Convection-Diffusion equation with energy generation (or sink) in in cylindrical and spherical coordinates.
[1] Incropera, F. P.; DeWitt, D. P.. Fundamentals of Heat and Mass Transfer, Fifth Edition. John Wiley & Sons, Inc, 2003.
[2] Welty, J. R., Wilson, C. E., and Rorrer, G. L., 2001, Fundamental of Heat and Mass Transfer, 4th ed., Wiley.
[3] Santos, L. P.; Marino Júnior, J. O.; Campos, M. D. ; Romão, E. C.. A Study about One-Dimensional Steady State Heat Transfer in Cylindrical and Spherical Coordinates. Applied Mathematical Sciences (Ruse), v. 7, p. 6227-6233, 2013.
[4] Romão, E. C.; Aguillar, J. C. Z.; Campos, M. D.; Moura, L. F. M.. Central difference method of O(x6) in solution of the CDR equation with variable coefficients and Robin condition, Int. J. Appl. Math., v. 25, n. 1, p. 1-15, 2012.
[5] Campos, M. D.; Romão, E. C.; Moura, L. F. M.. A Finite-Difference Method of High-Order Accuracy for the Solution of Transient Nonlinear Diffusive-Convective Problem in Three Dimensions. Case Studies Thermal Eng., vol. 3, pp. 43-50, 2014.
[6] Cruz, M. M.; Campos, M. D.; Martins, J. A.; Romão, E. C.. An Efficient Technique of Linearization towards Fourth Order Finite Differences for Numerical Solution of the 1D Burgers Equation. Defect and Diffusion Forum, vol. 348, pp. 285-290, 2014.
[7] Radwan, S. F.. Comparison of higher-order accurate schemes for solving the two-dimensional unsteady Burgers’ equation. J. Comput. Appl. Math., vol. 174, pp. 383-397, 2005.
[8] Cui, M.. Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation, Numerical Algorithms, vol. 62, no. 3, pp. 383–409, 2013.
[9] Chung, T. J.. Computational fluid dynamics. Cambridge: Cambridge University Press, 2002, 1012 p.. [10] Mitchell, A. R.; Griffiths, D. F.. The finite difference method in partial differential equations. John Wiley & Sons, 1987, 284 p.
Letícia Helena Paulino de Assis, Estaner Claro Romão, "Numerical Simulation of 1D Heat Conduction in Spherical and Cylindrical Coordinates by Fourth-Order Finite Difference Method," International Journal of Mathematics Trends and Technology (IJMTT), vol. 46, no. 3, pp. 125-128, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V46P521