Creep and Rupture Time response in a transversely isotropic rotating disc

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2017 by IJMTT Journal
Volume-46 Number-4
Year of Publication : 2017
Authors : Sujata Goyal, Manish Garg
  10.14445/22315373/IJMTT-V46P532

MLA

Sujata Goyal, Manish Garg "Creep and Rupture Time response in a transversely isotropic rotating disc", International Journal of Mathematics Trends and Technology (IJMTT). V46(4):224-229 June 2017. ISSN:2231-5373. www.ijmttjournal.org. Published by Seventh Sense Research Group.

Abstract
The steady states creep and rupture time response in a transversely isotropic FG rotating disc has been investigated. The disc under investigation is made of FGM containing non-linear distribution of silicon carbide particle (SiCp) in a matrix of pure aluminum along the radial distance. The stresses and strain rates in the FGM disc have been estimated for different values of anisotropic constant varying between 0.5 to 1.5. It is observed that radial stress in the disc decreases a little by increasing from 0.5 to 1.5. However, the tangential stress in the disc increases near the inner radius, but decreases towards the outer radius when increases from 0.5 to 1.5. The radial as well as tangential strain rates in the FGM disc are significantly reduce with the increase in extent of anisotropy from 0.5 to 1.5.

Reference
1. V. K. Gupta, S. B. Singh, H. N. Chandrawat and S. Ray, Eur. J. Mech. A-Solid, 23 (2004) 335.
2. M. N. Bayat, M. Saleem, B. B. Sahari, A. M. S. Hamouda and E. Mahdi, Thin. Wall. Struct., 45 (2007) 677.
3. M. N. Bayat, M. Saleem, B. B. Sahari, A. M. S. Hamouda and E. Mahdi Mech. Res. Commun., 35 (2008) 283.
4. T. Singh and V. K. Gupta, Compos. Struct., 93 (2011) 747.
5. N. S. Bhatnagar, P. S. Kulkarni and V. K. Arya, Nucl. Eng. Des., 91 (1986) 121.
6. R. Jain, K. Ramachandra and K. R. Y. Simha, Int. J. Mech. Sci., 41 (1999) 639.
7. S. B. Singh and S. Ray, Mech. Mater., 34 (2002) 363.
8. N. Alexandrova and S Alexandrov, J. Appl. Mech., 71 (2004) 427.
9. A. N. Eraslan and H. Argeso, Int. J. Solids Struct., 39 (2002) 3109.
10. D. Deepak, V. K. Gupta and A. K. Dham, J. Mech. Sci. Technol. 24 (2010) 2221.
11. M. Garg, B. S. Salaria and V. K. Gupta, Eng. Computation, 32(2015) 1230.
12. T.W. Clyne and P.J. Withers, An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge (1993).
13. Metals Handbook (Vol. 2) 9th Ed., American Society of Metals, Metals Park, Ohio, USA ( 1978).
14. Z. Y. Ma and S. C. Tjong, Compos. Sci. Technol., 61 (2001) 771.
15. S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, Singapore (1970).
16. A.M. Wahl, G.O. Sankey, M.J. Manjoine and E. Shoemaker, Journal of Applied Mechanics, ASME Trans., 21(1954), 225.
17. T.G. Nieh, Metall. Trans. A, 15 (1984), 139.
18. J.A. Orlando and G. Filho, Int. J. Mech. Sci. vol. 46 ((2004) 527.

Keywords
Creep, Anisotropy, Variable thickness.