Volume 46 | Number 4 | Year 2017 | Article Id. IJMTT-V46P539 | DOI : https://doi.org/10.14445/22315373/IJMTT-V46P539
We study the existence and uniqueness theorem of a functional Volterra integral equation in the space of Lebesgue integrable on unbounded interval by using the Banach fixed point theorem.
[1] M. M. El-Borai, Wagdy G. El-Sayed and Faez N. Ghaffoori, On The Solvability of Nonlinear Integral Functional Equation, (IJMTT) Vo 34, No. 1, June 2016.
[2] P. P. Zarejko, A.I. Koshlev, M. A. Krasnoselskii, S. G. Mikhlin, L. S. Rakovshchik, V. J. Stecenko, Integral Equations, Noordhoff, Leyden, 1975.
[3] J. Appell and P. P. Zabroejko, Continuity properties of the superposition operator, No. 131, Univ. Augsburg, (1986).
[4] M. M. A. Metwali, On solutions of quadratic integral equations, Adam Mickiewicz University (2013).
[5] J. Bana's and W. G. El-Sayed, Solvability of functional and Integral Equations in some classes of integrable functions, 1993.
[6] J. Appell and P. P. Zabroejko, Continuity properties of the superposition operator, No. 131, Univ. Augsburg, (1986). [7] R. R. Van Hassel, Functional Analysis, December 16, (2004).
[8] I. G. Petrovski and R. A .Silverman, Ordinary Differential Equations, 1973.
[9] Ravi P. Agarwal, Maria Meehan and Donal O'regan, Fixed Point Theory and Applications Cambridge University Press, 2004.
Faez N. Ghaffoori, "Existence and uniqueness for Volterra nonlinear integral equation," International Journal of Mathematics Trends and Technology (IJMTT), vol. 46, no. 4, pp. 272-276, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V46P539