Volume 47 | Number 2 | Year 2017 | Article Id. IJMTT-V47P511 | DOI : https://doi.org/10.14445/22315373/IJMTT-V47P511
Let n ≥ 2 be any fixed positive integer and ä denote the trace of symmetric skew reverse n-derivation Ä:Rn →R, associated with an antiautomorphism á* .
[1] Mohammad Ashraf, On symmetric biderivations in rings, Rend.Istit.Mat.Univ, Trieste, 31 (1999), 25-36.
[2] M. Bresar and J. Vukman, On some additive mappings in rings with involution, Aequationes. Math. 38 (1989), 178-185.
[3] L.O. Chung and Jiang Luh, Semiprime rings with nilpotent derivatives, Cannad.Math.Bull., 24 (1981), 415-421.
[4] Basudeb Dhara and Faiza Shujat, Symmetric skew n-derivations in prime and semi prime rings, Southeast Asian Bull. of Math., 1-9 , (2017).
[5] Ajda Fosner, Prime and semiprime rings with symmetric skew 3- derivations, Aequationes .Math. 87 (2014), 191-200.
[6] I.N. Herstein.., Jordan derivations of prime rings, Proc.Amer.Math.Soc. 8 (1957), 1104-1110.
[7] Y.S. Jung. and K.H.Park, On prime and semiprime rings with permuting 3-derivations, Bull.Korean.Math.Soc., 44 (2007), 789- 794.
[8] C. Jayasubba Reddy, S.Vasanth Kumar and S.Mallikarjuna Rao, Symmetric skew 4- derivations on prime rings, Global Jr. of pure and appl. Math., 12 (2016), 1013-1018.
[9] C. Jayasubba Reddy, V.Vijaya Kumar and K.Hemavati, Prime ring with symmetric skew 3-reverse derivation, IJMCAR, 4 (2014), 69-73.
[10] C. Jayasubba Reddy, V.Vijaya Kumar and S.Mallikarjuna Rao, Semiprime ring with Symmetric skew 3-reverse derivations, Trans. on Math., 1 (2015), 11-15.
[11] C. Jayasubba Reddy, V.Vijaya Kumar and S.Mallikarjuna Rao, Prime ring with symmetric skew 4-reverse derivation, Int. J. of Pure Algebra, 6 (2016), 251-254.
[12] C. Jayasubba Reddy, S.Vasanth Kumar and K. Subbarayudu, Symmetric skew 4-reverse derivations on prime rings, IOSR Jr. of Math., 12 (2016), 60-63.
[13] Joseph H Mayne, Centralizing mappings of prime rings, Cannad.Math.Bull, 27 (1983), 122-126.
[14] E.C. Posner, Derivations in prime rings, Amer.Math.Soc, 8 (1957), 1093-1100.
[15] K.H. Park,, On 4-permuting 4-derivations in prime and semiprimerings,. Korea.Soc. .Educ.Ser. B.Pure.Appl.Math, 14 (2007), 271-278.
[16] K.H. Park, On prime and semiprime rings with symmetric nderivations , J.Chungcheong Math.Soc., 22 (2009), 451-458.
[17] Faiza Shujat, Abuzaid Ansari, Symmetric skew 4-derivations on prime rings, J. Math. Compt.Sci., 4 (2014), 649-656.
[18] M Samman and N Alyamani, Derivations and Reverse derivations, Int.Math.Forum, 2 (2007), 1895-1902.
[19] J. Vukman, Commuting and centralizing mappings in prime rings, Proc.Amer.Math.Soc, 109 (1990), 47-52.
[20] J. Vukman, Symmetric biderivations on prime and semiprime rings, Aequationes Math.Soc. 38 (1989), 245-254.
[21] J. Vukman, Two results concerning symmetric biderivations on prime rings, Aequationes. Math, 49 (1990), 181-189.
[22] V.K. Yadav. and R.K. Sharma., Skew n-derivations on prime and semi prime rings, Ann.Univ.Ferrara, (2016), 1-12.
B. Satyanarayana, Mohammad Mastan, "Symmetric Skew Reverse n-Derivations on Prime Rings and Semiprime rings," International Journal of Mathematics Trends and Technology (IJMTT), vol. 47, no. 2, pp. 81-86, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V47P511