Volume 47 | Number 2 | Year 2017 | Article Id. IJMTT-V47P520 | DOI : https://doi.org/10.14445/22315373/IJMTT-V47P520
We consider the ring.
[1] S.K.Arora, M.Pruthi, “Minimal Cyclic Codes of prime power length”, Finite Fields Appl.3 (1997)99-113.
[2] S.K. Arora, M. Pruthi, “Minimal Cyclic Codes of length 2pn
” Finite Fields Appl. 5 (1999) 177-187.
[3] Anuradha Sharma, G.K.Bakshi, V.C. Dumir, M. Raka, “Cyclotomic Numbers and Primitive idempotents in the ring GF (l) [x]/<
1
n
p
x
>”, Finite Fields Appl. 10 (2004) 653-673.
[4] G.K.Bakshi, Madhu Raka, “Minimal cyclic codes of length pn
q”, Finite Fields Appl.9 (2003) 432-448.
[5] Ranjeet Singh, M.Pruthi, “Primitive Idempotents of Irreducible Quadratic Residue Cyclic Codes of Length pn
q
m
” International Journal
of Algebra vol.5 (2011) 285-294.
[6] Ranjeet Singh, “Some results in the Ring
n m 2p q
n m 2p q
R GF( )[x] / (x 1) l
International Journal of Mathematics Trends and Technology Vol (35) No.1(2016) 32-37.
Dr. Ranjeet Singh, Monika, "Idempotent generators of quadratic residue cyclic codes of length 4pnqm," International Journal of Mathematics Trends and Technology (IJMTT), vol. 47, no. 2, pp. 163-171, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V47P520