Volume 47 | Number 3 | Year 2017 | Article Id. IJMTT-V47P529 | DOI : https://doi.org/10.14445/22315373/IJMTT-V47P529
In this paper, the concept of δ- lower semi precontinuous functions is to be introduced. Some characterization theorems and their basic properties are also to be investigated. It is note that δ- lower semi precontinuous functions play an important role in defining δ - preinduced fuzzy supra topological spaces. The connection between the δ- preinduced fuzzy supra topology and its corresponding topological space is to be studied. The relationship between δ- preinduced fuzzy supra topological spaces and that of the induced fuzzy topological spaces due to Lon owen are to be investigated. Lastly some applications are to be shown.
1. M. E. Abd El-Monsef and A. E. Ramandan, Fuzzy supra topological spaces, Indian J. Pure and Appl. Math., 18 (1987) 322-329.
2. R. N. Bhaumik and A. Mukherjee, Completely induced fuzzy topological spaces, Fuzzy Sets and Systems, 47 (1992) 387-390.
3. R. N. Bhaumik and A. Mukherjee, Induced fuzzy supra topological spaces, Fuzzy Sets and Systems, 91 (1997) 121-126. 4. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968) 182-190.
5. S. Ray Chaudhuri and M. N. Mukherjee, δ - almost continuity and δ - preopen sets, Bulletin of the Institute of Mathematics Academia Sinica, 21(4) (1993).
6. Wang Geping and Hu Lanfang, Induced fuzzy topological spaces, J. Math. Anal. Appl., 108 (1985) 495-506.
7. N. Levin, Semiopen sets and semicontinuity in topological space, Amer. Math. Monthly 70 (1963) 36-41.
8. R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56 (1975) 621-633.
9. A. S. Masshour, M. E. Abd El. Monsef and S. N. El. Deeb, Precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982) 47-53.
10. Hu Chang Ming, Fuzzy topological spaces, J. Math. Anal. Appl., 118 (1985) 141-178.
11. A. Mukherjee, Preinduced fuzzy supra topological spaces and the corresponding p-initial spaces, J. Tri. Math. Soc., 3 (2001) 69-75.
12. A. Mukherjee and S. Halder, δ - induced fuzzy topological spaces, Proc. Nat. Sem. On Recent Trends in Maths & its Appl., April 28-29 (2003) 177-182.
13. T. Noiri, δ - continuous functions, J. Korean Math. Soc., 16 (1986) 161-166.
14. R. K. Saraf and S. K. Gupta, δ - semi preopen sets, the Bulletin, GUMA 5 (1998) 89-93.
15. N. V. Velicko, H-closed topological space, Amer. Math. Soc. Transl 78 (1968) 103-118.
16. M. D. Weiss Fixed Points, Separation and induced topologies for fuzzy sets, J. Math. Anal. Appl., 50 (1975) 142-150.
Dr. Runu Dhar, "On δ- lower semi precontinuous functions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 47, no. 3, pp. 221-224, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V47P529