Volume 47 | Number 3 | Year 2017 | Article Id. IJMTT-V47P530 | DOI : https://doi.org/10.14445/22315373/IJMTT-V47P530
Prime number theorem is a well known theorem in Mathematics, specially in Number Theory which describes the asymptotic distribution of prime numbers. One of the remarkable discovery regarding this topic is Riemann Hypothesis. Since a long period several renowned mathematicians are trying to prove or disprove this hypothesis and to reduce the error bound of the asymptotic distribution of prime counting function.
1. Apstol, Tom. M , Introduction to analytic number
theory, Undergraduate Texts in Mathematics, NewYorkHeidelberg: Springer-Verlag, (1976), 7.
2. H.M.Edwards, Riemannโs Zeta function, Dover
Publications, New York, (2001).
3. C.F.Gauss, Werke, 2nd ed., Koniglichen Gesellschaft der
Wissenschaften, Gottingen, (1876)
4. G.H.Hardy, Prime numbers, British Association Report,
British Association, Manchester,Vol.2 (1915) ,pp-350-
354.
5. P.L.Chebysev, La totalite des nombres premiers
infericurs a uni limite done, J.Math.Pures Appl. 17
(1852) ,pp-341-365.
6. George E.Andrews, Number theory, W.B.Saunders Co.,
Philadelphia, 1971 (Reprinted by Dover,
NewYork,1994).
7. B.Riemann,Ueber die Anzahl der primzahlen under liner
gegebenen Grosse, Monatsberichte der Berliner
Akademic (1859), 671-680.
8. J.Hadamard, Sur la distribution des zeros de la fonction
๐(๐ ) et ses consequences arithmetiques,
Bull.Soc.Math.France 14 (1896), 199-220.
9. Charles-Jean de la V Poussin, Recherches analytiques
sur la theorie des numbers; Premiere particle; la fonction
๐(๐ ) de Riemann et les numbers.
10. J.E.Littlewood, Sur la distribution des numbers
premiers, C.R.Acad.Sci, Paris 158 (1914), 263-266.
11. S.Skewes, on the difference ๐ฑ ๐ฅ โ ๐ฟ๐(๐ฅ),
Jour.London.Math.Soc.8 (1933),277-283.
12. S.Skewes, on the difference ๐ฑ ๐ฅ โ ๐ฟ๐(๐ฅ),
Proc.London.Math.Soc.5 (1955),48-70.
13. A.S.Lehman, on the difference ๐ฑ ๐ฅ โ ๐ฟ๐(๐ฅ), Acta
Arithmetica 11 (1966),397-410.
14. Human J.J.te Riele, On the sign of the difference
๐ฑ ๐ฅ โ ๐ฟ๐(๐ฅ), Mathematics of computation 48(1987),
323-328.
15. B.C.Bredt and Robert A.Rankin, Ramanujan Letters and
Commentary, Amer.Math.Soc. and London
Math.Soc,Providence, Rhode Island, 1995.
16. H.Von Mangoldt, Zu Riemannโs Abhandlung โ Ueber
die Anzahl der primzahlen unter einer gegebenes
Grosseโ ,J.Reine Angrew.Math.114 (1895), 255-305.
17. D.P.Datta and A.Ray Chaudhuri, Scale free analysis and
prime number theorem, Fractals, 18,(2010), 171-184.
18. A. Ray Chaudhuri, Scale Invariant Limit and Emergence
of Complexity: Applications to Traffic Flow,
International Journal of Mathematics Trends and
Technology, Vol. 19, Issue 2 (2015) 102 โ 107. ISSN:
2231-5373.
Anuja Ray Chaudhuri, "A Short Review on Prime Number Theorem," International Journal of Mathematics Trends and Technology (IJMTT), vol. 47, no. 3, pp. 225-229, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V47P530