Volume 47 | Number 4 | Year 2017 | Article Id. IJMTT-V47P534 | DOI : https://doi.org/10.14445/22315373/IJMTT-V47P534
Sanma.G.R, T. Nicholas, "On detection number of cycle related graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 47, no. 4, pp. 248-252, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V47P534
[1]. G. Chartrand, H. Escuadro, F. Okamoto and P. Zhang. Detectable coloring of graphs, Util. Math. 69 (2006) 13-32.
[2]. G. Chartrand, P. Zhang: introduction to graph theory. McGraw-hill, Boston, 2005.
[3]. H. Escuadro, P. Zhang. On detectable colorings of graphs. MathematicaBohemica, vol. 130 (2005), No. 4, 427- 445.
[4] H. Escuadro, F. Okamoto and P. Zhang. Vertex- distinguishing colorings of graphs: A survey of recent developments. AKCE J. Graphs.Combin., 4(3); 277- 299. 2007.
[5]. H. Escuadro, Futaba Fujie, Chad. E. Musik. A note on the total detection numbers of cycles.Discussions Mathematicae. Graph Theory 35 (2015) 237-247.
[6]. F. Havet, N. Paramaguru and R. Sampathkumar. Detection number of bipartite graphs and cubic graphs, Discrete Mathematcs and Theoretical computer science vol. 16:3, 2014, 333- 342.
[7]. N. Paramaguru, R. Sampathkumar.graphs with vertex- coloring and detectable 2-edge- weighting. AKCE International Journal of Graphs and Combinatorics 13 (2016) 146-156.
[8]. M.Karonski, T.Luczak and A.G.Thomson. Edge weights and vertex colors. J. Combin. Theory Ser.B, 91:151-157, 2004.
[9]. G. R. Sanma, T. Nicholas, On Detection Number of Graphs.International Journal of Computational and Applied Mathematics. ISSN 1819-4966 Volume 12, Number 3(2017), pp. 803-810.