Volume 47 | Number 5 | Year 2017 | Article Id. IJMTT-V47P541 | DOI : https://doi.org/10.14445/22315373/IJMTT-V47P541
The β-dual of a vector-valued double sequence space is defined and studied we show that if an X-valued sequence space E is a BK-space having AK property, then the dual space of E and its β-dual are isometrically isomorphic.
1. Gross-Erdmann, K.G. : “The structure of the sequence spaces of Maddox”, Canada J. Math., 44, (1992), no. 2, 298-302.
2. Gupta, M.; Kamthan, P.K. and Patterson, J. : Duals of generalized sequence spaces, J. Math. Anal. Appl. 82 (1981), no. 1, 152-168.
3. Maddox, I.J. : Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser., (2) 18(1967), 345-355
4. …………..: Paranormed sequence spaces generated infinite matrices, Math. Proe. Cambridge Philos. Soc., 64(1968), 335-340.
5. ……………: Elements of Functional Analysts, Cambridge University Press, London, 1970.
6. Nakano, H. : Modulared sequence spaces, Proc. Japan Acad., 27(1951), 508-512.
Naveen Kumar Srivastava, "β-Dual of Vector-Valued Double Sequence Spaces of Maddox," International Journal of Mathematics Trends and Technology (IJMTT), vol. 47, no. 5, pp. 295-304, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V47P541