Volume 48 | Number 3 | Year 2017 | Article Id. IJMTT-V48P522 | DOI : https://doi.org/10.14445/22315373/IJMTT-V48P522
In this paper, we introduce a class Φ and define −contractive type mappings for digital metric spaces. We prove a crucial Lemma in digital metric spaces. Using this Lemma we prove existence and uniqueness of fixed point theorems in digital metric spaces. And we obtain Banach contraction principle in digital metric spaces as a corollary. We also give examples to illustrate our result.
[1] Banach S: Sur les operations dans les ensembles abstraitset-leurs applications aux equations integrales, Fund. Math., 1922, 3, 133–181.
[2] Boxer L, Digitally Continuous Functions, Pattern Recognition Letters, 15 (1994), 833-839.
[3] Boxer L: A Classical Constructions for The Digital Fundamen-tal Group, J. Math. ImagingVis., 10(1999), 51-62.
[4] Boxer L: Properties of Digital Homotopy, J. Math. Imaging Vis., 22(2005), 19-26.
[5] Boxer L: Digital Products, Wedges and Covering Spacess, J. Math. Imaging Vis., 25 (2006), 159-171.
[6] Boxer L: Continuous maps on Digital Simple Closed Curevs, Appl. Math., 1 (2010), 377- 386.
[7] Brouwer LEJ: ubereineindeutige, stetigerTransformationen von Flaachen in Sich, Math. Ann., 69 (1910), 176-180.
[8] Brouwer LEJ: uberAbbildungen Von Mannigfaltigkeiton, Math. Ann., 77(1912), 97-115.
[9] Choudhury BS: Certain fixed point theorems in generaliza-tions of metric spaces, J.Tech.,XXXIV, jan(1997), 31-38.
[10] Choudhury BS: A unique common fixed point theorem for a sequence of self – mappings in Menger spaces, Bull. Korean Math. Soc., 37 (2000), No. 3, 569-575.
[11] Choudhury BS, Das KP: A new contraction principle in Men-ger spaces, ActaMathematicaSinicia, English Series 2008, 24(8), 1379-1386.
[12] Choudhury BS, Kumar S, Asha, Das K: Some fixed point theorems in G-metric spaces, Math. Sci. Lett. 2012, 1(1), 25-31.
[13] Ciric LJ.B: A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc., 45, (1974), 267-273.
[14] Edelstein M: An Extension of Banach’s Contraction Principle, Proc. Amer. Math. Soc.,12, (1961), 7-10.
[15] Ege O, Karaca I: Lefschetz Fixed Point Theorem for Digital Images, Fixed Point Theory.Appl., 2013(2013), 13 pages.
[16] Ege O, Karaca I: Applications of The Lefschetz Number to Digital Images, Bull. Belg. Math. Soc. Simon Stevin, 21(2014), 823-839.
[17] Ege O, Karaca I: Banach Fixed Point Theorem for Digital Images, J. Nonlinear Sci.Appl. 8(2015), 237-245.
[18] M. Frechet: “Sur quelques points du calculfonctionnel”, Ren-diconti del Circolomatematico di Palermo, Vol. 22(1906), No.1,pp.1-72.
[19] Hicks, T.L.: Fixed point theorems for d−completetopological spaces 1, Internat.J.Math. and Mat. Sci., vol.15, No.3, (1992), 435-440.
[20] Kannan R: Some results on fixed point, Bull. Cal. Mathe. Soc. 1968, 60, 71-76.
[21] Kannan R: Some results on fixed point II, Amer. Mathe. Monthly 1969, 76, 405-408.
[22] Kong TY: A Digital Fundamental Group, Computers and Graphics, 13(1989), 159-166.
[23] T. Y. Kong, A. Rosenfeld: Topology Algorithms for the digital Image Processing, Elsevier Sci., Amsterdam, (1996).
[24] Rosenfeld A: Digital Topology, Amer. Math. Monthly, 86(1979), 76-87.
[25] Rosenfeld A: Continuous functions on digital pictures, Pattern Recognition Letters 4, pp. 177-184, 1986.
[26] Han S.E: B.G Park: Digital graph (k0 , k1)-isomorphism and its application. Atlas- conference, (2003).
[27] Han S.E: On the simplicial complex stemmed from a digital graph, Honam Math. J., 27 (2005), 115-129.
[28] Han S.E: Non-Product property of the digital fundamental group, Inform. Sci., 171 (2005), 73-91.
[29] Han S.E:The k-homotopic thinning and a touus-like digital image in Zn, J. Math. Imaging. Vision., 31 (2008), 1-16.
[30] Han S.E: KD-(k0 , k1)-homotopy equivalence and its applica-tions, J. Korean. Math. Soc., 47 (2010), 1031-1054.
[31] Han S.E: Banach fixed point theorem from the viewpoint of digital topology, J. Nonlinear sci. Appl., 9(2016), 895-905.
[32] Sastry KPR and SrinivasaRao CH: A unique fixed point theo-rem for a self map on F−complete topological spaces, Bull. Cal. Math. Soc., 92(1), (2000), 71-74.
[33] Sastry KPR and SrinivasaRao CH: Fixed point theorems in d−complete topological spaces, The Math. Edu. Vol. XXXV, No.2, (2001), 101-103.
[34] Sastry KPR , Kameswari MVR, SrinivasaRao CH, Venkata Bhaskar R: Banach Type Fixed Point Theorems for set valued map on a Fuzzy metric spaces, Gen. Math. Notes, Vol. 23, No. 1, July 2014, pp. 32-44.
[35] Zamfirescu T.: Fixed point theorems in metric spaces, Arch. Math. (Basel), 23 (1972), 292-298.
K. Sridevi, M. V. R. Kameswari, D. M. K. Kiran, "Fixed Point Theorems for Digital Contractive Type Mappings in Digital Metric Spaces," International Journal of Mathematics Trends and Technology (IJMTT), vol. 48, no. 3, pp. 159-167, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V48P522