Volume 48 | Number 3 | Year 2017 | Article Id. IJMTT-V48P523 | DOI : https://doi.org/10.14445/22315373/IJMTT-V48P523
Aasiya Lateef, Chandan.K. Verma, "Investigation for Stability of Fractional Explicit Method for pricing option," International Journal of Mathematics Trends and Technology (IJMTT), vol. 48, no. 3, pp. 168-174, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V48P523
[1] Abel N.H. (1823). Solution de quelques problemes a laide dintegrales definies, Oevres Completes, Vol. 1, Grondahl, Christiana, Norway, 16-18.
[2] Acedo L., Yuste S.(2005). An explicit finite difference method and a new von Neumann - typestability analysis for fractional diffusion equations, SIAM J. Numerical Analysis.,42 (5), 1862- 1874.
[3] Bashour M., Dalir M.(2010), Applications of Fractional Calculus Applied Mathematical Sciences, Vol. 4, no.21, 1021- 1032.
[4] Chen C., Liu F., Turner I., Anh V.(2007). A Fourier method for the fractional diffusion equation describing sub-diffusion, J.Comput. Phys., 227 (2) 886-897.
[5] Chen C.,Liu F., Burrage K.(2008). Finite difference methods and a Fourier analysis for the fractional reaction-sub-diffusion Equation, Applied Mathematics and Computation, 198 (2) 754-769.
[6] Ding H., Zhang Y. (2011), Notes on implicit finite difference approximation for time fractional diffusion equations, Int. J.Compu. Math. Appl., 61 2924-2928.
[7] Fourier, J.B.J. (1822). Theorie analytique de la chaleur, Firmin didot, Cambridge University Press (2009), Cambridge, UK.
[8] Galeone L., Grappa R. (2009). Explicit methods for fractional differential equations and their stability properties, Journal of Computational and Applied Mathematics 228, 548–560.