Volume 48 | Number 3 | Year 2017 | Article Id. IJMTT-V48P525 | DOI : https://doi.org/10.14445/22315373/IJMTT-V48P525
If R is a commutative ring, 𝑍(𝑅) is the set of zero-divisor of 𝑅 and 𝑍 ∗ (𝑅) = 𝑍(𝑅) − {0}, then the zero-divisor graph of R, Γ (Z*(𝑅)) usually written as 𝛤(𝑅), is the graph in which each element of Z*(𝑅) is a vertex and two distinct vertices x and y are adjacent if and only if 𝑥𝑦 = 0. In this paper we present a construction of zero divisor graphs of rings. In particular we consider ring of Gaussian integers modulo n, i.e. 𝛤 ℤ𝑛 [𝑖].
[1] I. Beck, Coloring of commutative rings. Journal of Algebra 116, 1988, 208-226.
[2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring. Journal of Algebra 217, 1999, 434-447.
[3] S. Akbari, H. R. Maimani and S. Yassemi, When a zero-divisor graph is planar or a complete r-partite graph. Journal of Algebra 270, 2003, 169-180.
[4] J. Warfel, Zero-Divisor Graphs for Direct Products of Commutative rings. Huston J. Mathematics, 2004.
[5] F. DeMeyer and L. DeMeyer, Zero divisor graphs of semigroups, Journal of Algebra 283, 2005, 190-198.
[6] S. Akbari and A. Mohammadian, On zero-divisor graphs of finite rings. Journal of Algebra 314, 2007, 168-184.
[7] E. A. Osba, S. Al-Addasi and N. AJaradeh, Zero Divisor Graph for the Ring of Gaussian integers modulo n. Communications in Algebra 36, 2008, 3865-3877.
[8] L. Demeyer, L. Greve, A. Sabbaghi and J. Wang, The Zero-Divisor Graph Associated To A Semigroup, Comm. Algebra 38, 2010, 3370-3391.
[9] J. Coykendall, S. Sather-Wagstaff, L. Sheppardson and S. Spiroff, On Zero Divisor Graphs, Progress in Commutative Algebra 2, 2012, 241-299.
[10] G. Dresden and W. M. Dymacek, Finding Factors of Factor rings over the Gaussian Integers, The Mathematical Association of America, 2005.
[11] M. Axtell, J. Stickles and J. Warfel, Zero divisor graph for direct products of commutative rings, Houston J. Math, 32(4), 2006, 985-994.
D. Baruah, "Construction of Zero Divisor Graphs of Rings," International Journal of Mathematics Trends and Technology (IJMTT), vol. 48, no. 3, pp. 180-185, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V48P525