Volume 48 | Number 5 | Year 2017 | Article Id. IJMTT-V48P543 | DOI : https://doi.org/10.14445/22315373/IJMTT-V48P543
Let G = (V,E) be a simple ,finite undirected and connected graph. A graph G = (V,E) be a graph with order p and size q. G admits an Edge – even graceful labeling if there exists a bijection f from E to {2,4,6… 2q-2} so that the induced mapping f + from V to {0,1,2…2q-1} given by In this paper we have constructed an Edge – even graceful labeling on circulant graphs with generating sets (1,2) (1,2,3) and (1,2,3,4) for odd n , n𝜖 I.
1. J.Baskar Babujee , On edge bi-magic labeling , J.Combin . Inf.Syst.Sci.,28(2004)239-244.
2. M.Baskaro , M.Miller , Slamin and W.D.Wallis,Edge –magic total labeling ,Austral, J.Combin .,22(2000)177-190.
3. Gallian J.A. A Dynamic Survey of Graph labeling , The Electronic Journal Of Combinatorics,16,#Ds6(2013).
4. Gayathri .B , Duraisamy .M and Tamilselvi.M , Even edge graceful labeling of some cycle related graphs , Int.J.Math.Comput.Sci.,2(2007)179-187.
5. G.Kalaimurugan “On Edge – Odd graceful labeling on circulant graphs”. Journal of Computer and Mathematical Sciences.
6. Lo,S.,On edge graceful labeling of graphs ,Congress number,50,231-241(1985).
7. Singhun .S Graphs with edge – odd graceful labeling, International Mathematical forum, Vol.8,2013 no.12,577-582.
8. Solairaju .A and Chithra .K Edge – odd graceful labeling of some graphs, Electronics Notes in Discrete Mathematics , 33,15-20(2009).
9. West, D.B. introduction to graph theory , Prentice – Hall Inc , (2000).
Dr.K.Ameenal Bibi, T.Ranjani, "EDGE – Even Graceful Labeling on Circulant Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 48, no. 5, pp. 288-291, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V48P543