Volume 48 | Number 5 | Year 2017 | Article Id. IJMTT-V48P547 | DOI : https://doi.org/10.14445/22315373/IJMTT-V48P547
Srinivas Maripala, N. Kishan, "Nanofluid and Micropolar Fluid Flow over a Shrinking Sheet with Heat Transfer," International Journal of Mathematics Trends and Technology (IJMTT), vol. 48, no. 5, pp. 305-320, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V48P547
[1] A.C. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1966) 1–18.
[2] Eringen AC. Theory of thermomicrofluids. J Math Anal Appl1972;38:480–96.
[3] Ariman T, Turk MA, Sylvester ND. Microcontinuum fluidmechanics: a review. Int J Eng Sci 1973;11:905–30.
[4] Ariman T, Turk MA, Sylvester ND. Microcontinuum fluidmechanics: a review. Int J Eng Sci 1974;12:273–93.
[5] Lukaszewicz G. Micropolar fluids: theory and application. Basel:Birkhauser; 1999.
[6] Eringen AC. Microcontinum field theory II: Fluent media. NewYork: Springer; 2001.
[7] J. Peddieson, R.P. McNitt, Boundary-layer theory for a micropolar fluid, Recent Adv. Eng.Sci.5 (1970) 405–426.
[8] J.Peddieson, An application of the micropolar fluid model to the calculation of turbulent shear flow, Int. J. Eng. Sci. 10 (1972) 23–32.
[9] G. Ahmadi, Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, Int. J. Eng. Sci. 14 (1976) 639–646.
[10] H. Kummerer, Similar laminar boundary layers in incompressible micropolar fluids, Rheol. Acta 16 (1977) 261–265.
[11] BS Malga, N Kishan ,” Viscous Dissipation Effects on Unsteady free Convection and Mass Transfer Flow of Micropolar Fluid Embedded in a Porous Media with Chemical Reaction” Elixir Appl. Math. 63 (2013) 18569-18578.
[12] G.S. Guram, A.C. Smith, Stagnation flow of micropolar fluids with strong and weak interactions, Comput. Math. Appl. 6 (1980) 213–233.
[13] S.K. Jena, M.N. Mathur, Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate, Int. J. Eng.Sci. 19 (1981) 1431–1439.
[14] R.S.R. Gorla, Micropolar boundary layer flow at a stagnation on a moving wall,Int. J. Eng. Sci. 21(1983)25–33.
[15] Miklavcˇicˇ M, Wang CY (2006) Viscous flow due to a shrinking sheet. Quart.Appl. Math. 64: 283–290.
[16] Goldstein J (1965) On backward boundary layers and flow in converging passages. J. Fluid Mech. 21: 33–45.
[17] M. Miklavcˇicˇ, C.Y. Wang, Viscous flow due a shrinking sheet, Q. Appl. Math. 64(2006) 283–290.
[18] C.Y. Wang, Liquid film on an unsteady stretching sheet, Q. Appl. Math. 48(1990) 601–610.
[19] T. Fang, Boundary layer flow over a shrinking sheet with power-law velocity,Int. J. Heat Mass Transfer 51 (2008) 5838–5843.
[20] T. Fang, J. Zhang, Closed-form exact solution of MHD viscous flow over a shrinking sheet, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 2853–2857.
[21] T. Fang, J. Zhang, S. Yao, Viscous flow over an unsteady shrinking sheet with mass transfer, Chin. Phys. Lett. 26 (2009) 014703.
[22] K. Bhattacharyya, Boundary layer flow and heat transfer over an exponentially shrinking sheet, Chin. Phys. Lett. 28 (2011) 074701.
[23] A. Ishak, Y.Y. Lok, I. Pop, Non-Newtonian power-law fluid flow past a shrinking sheet with suction, Chem. Eng. Commun. 199 (2012) 142–150.
[24] N.A. Yacob, A. Ishak, Micropolar fluid flow over a shrinking sheet, Meccanica 47 (2012) 293–299.
[25] C.Y. Wang, Stagnation flow towards a shrinking sheet, Int. J. Non-Linear Mech. 43 (2008) 377–382.
[26] E.M.A.Elbashbeshy, Radiation effect on heat transfer over a stretching surface, Can. J.Phys.78 (2000) 1107–1112.
[27] K. Bhattacharyya, S. Mukhopadhyay, G.C. Layek, Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet, Int. J. Heat Mass Transfer 54 (2011) 308–313.
[28] Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles, Developments and Applications of Non-Newtonian Flows. FED-vol.231/MDvol. 66: 99–105.
[29]. Li Y, Zhou J, Tung S, Schneider E, Xi S (2009) A review on development of nanofluid preparation and characterization. Powder Tech. 196: 89–101.
[30]. Kakac¸ S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transfer 52: 3187–3196.
[31]. N. Kishan and D Hunegnaw, “MHD Boundary Layer Flow and Heat Transfer Over a Non-Linearly Permeable Stretching/Shrinking Sheet in a Nanofluid with Suction Effect, Thermal Radiation and Chemical Reaction.” Journal of Nanofluids”, volume.3, pages1-9. 2014.
[32]. Wong KV, De Leon O (2010) Applications of nanofluids: current and future. Adv. Mech. Eng. 2010: Article ID 519659, 11 pages.
[33]. Saidur R, Leong KY, Mohammad HA (2011) A review on applications and challenges of nanofluids. Renew. Sust. Ener. Rev. 15: 1646–1668.
[34]. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S (2013) A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transfer 57: 582–594.
[35]. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transfer 46: 3639–3653.
[36]. Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided liddriven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transfer 50: 2002–2018.
[37]. Buongiorno J (2006) Convective transport in nanofluids. ASME J. Heat Transfer 128: 240–250.
[38]. Nield DA, Kuznetsov AV (2009) The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer 52: 5792–5795.
[39]. Kuznetsov AV, Nield DA (2010) Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49: 243–247.
[40] Srinivas Maripala and Kishan.N,” Unsteady MHD flow and heat transfer of nanofluid over a permeable shrinking sheet with thermal radiation and chemical reaction”, American Journal of Engineering Research (AJER) Volume-4, Issue-6, pp-68-79(2015).
[41]. Krishnendu Bhattacharyya, Swati Mukhopadhyay, G.C.Layek, studied the “Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet”. International Journal of Heat and Mass Transfer 55(2012) 2945-2952.
[42]S.K. Jena, M.N. Mathur, Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate, Int. J. Eng. Sci. 19 (1981) 1431–1439.
[43] G.S. Guram, A.C. Smith, Stagnation flow of micropolar fluids with strong and weak interactions, Comput. Math. Appl. 6 (1980) 213–233.
[44]G. Ahmadi, Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, Int. J. Eng. Sci. 14 (1976) 639–646.
[45] J. Peddieson, An application of the micropolar fluid model to the calculation of turbulent shear flow, Int. J. Eng. Sci. 10 (1972) 23–32.
[46] R.S.R.Gorla, Micropolar boundary layer flow at astagnation on a moving wall, Int. J. Eng.Sci. 21 (1983) 25–33.
[47]A. Ishak, R. Nazar, I. Pop, Heat transfer over a stretching surface with variable heat flux in micropolar fluids, Phys. Lett. A 372 (2008) 559–561.
[48] M.Q. Brewster, Thermal Radiative Transfer Properties, John Wiley and Sons,1972.