Volume 48 | Number 5 | Year 2017 | Article Id. IJMTT-V48P547 | DOI : https://doi.org/10.14445/22315373/IJMTT-V48P547
This analysis investigated with the boundary layer flow and heat transfer aspects of a micropoloar nanofluid over a porous shrinking sheet with thermal radiation. The boundary layer equations governed by the partial differential equations are transformed in to a set of ordinary differential equations with the help of suitable local similarity transformations. The coupled nonlinear ordinary differential equations are solved by the implicit finite difference method along with the Thamous algorithm. Dual solutions of dimensionless velocity, angular velocity, temperature and concentration profiles are analyzed by the effect of various controlling flow parameters viz., Lewis number Le, thermophoresis Nt, Brownian motion parameter Nb, Radiation parameter R, Prandtl number Pr, material parameter K, mass suction parameter S, magnetic parameter M. Physical quantities such as skin frication coefficient, local heat, local mass fluxes are also computed and are shown in a table.
[1] A.C. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1966) 1–18.
[2] Eringen AC. Theory of thermomicrofluids. J Math Anal Appl1972;38:480–96.
[3] Ariman T, Turk MA, Sylvester ND. Microcontinuum fluidmechanics: a review. Int J Eng Sci 1973;11:905–30.
[4] Ariman T, Turk MA, Sylvester ND. Microcontinuum fluidmechanics: a review. Int J Eng Sci 1974;12:273–93.
[5] Lukaszewicz G. Micropolar fluids: theory and application. Basel:Birkhauser; 1999.
[6] Eringen AC. Microcontinum field theory II: Fluent media. NewYork: Springer; 2001.
[7] J. Peddieson, R.P. McNitt, Boundary-layer theory for a micropolar fluid, Recent Adv. Eng.Sci.5 (1970) 405–426.
[8] J.Peddieson, An application of the micropolar fluid model to the calculation of turbulent shear flow, Int. J. Eng. Sci. 10 (1972) 23–32.
[9] G. Ahmadi, Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, Int. J. Eng. Sci. 14 (1976) 639–646.
[10] H. Kummerer, Similar laminar boundary layers in incompressible micropolar fluids, Rheol. Acta 16 (1977) 261–265.
[11] BS Malga, N Kishan ,” Viscous Dissipation Effects on Unsteady free Convection and Mass Transfer Flow of Micropolar Fluid Embedded in a Porous Media with Chemical Reaction” Elixir Appl. Math. 63 (2013) 18569-18578.
[12] G.S. Guram, A.C. Smith, Stagnation flow of micropolar fluids with strong and weak interactions, Comput. Math. Appl. 6 (1980) 213–233.
[13] S.K. Jena, M.N. Mathur, Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate, Int. J. Eng.Sci. 19 (1981) 1431–1439.
[14] R.S.R. Gorla, Micropolar boundary layer flow at a stagnation on a moving wall,Int. J. Eng. Sci. 21(1983)25–33.
[15] Miklavcˇicˇ M, Wang CY (2006) Viscous flow due to a shrinking sheet. Quart.Appl. Math. 64: 283–290.
[16] Goldstein J (1965) On backward boundary layers and flow in converging passages. J. Fluid Mech. 21: 33–45.
[17] M. Miklavcˇicˇ, C.Y. Wang, Viscous flow due a shrinking sheet, Q. Appl. Math. 64(2006) 283–290.
[18] C.Y. Wang, Liquid film on an unsteady stretching sheet, Q. Appl. Math. 48(1990) 601–610.
[19] T. Fang, Boundary layer flow over a shrinking sheet with power-law velocity,Int. J. Heat Mass Transfer 51 (2008) 5838–5843.
[20] T. Fang, J. Zhang, Closed-form exact solution of MHD viscous flow over a shrinking sheet, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 2853–2857.
[21] T. Fang, J. Zhang, S. Yao, Viscous flow over an unsteady shrinking sheet with mass transfer, Chin. Phys. Lett. 26 (2009) 014703.
[22] K. Bhattacharyya, Boundary layer flow and heat transfer over an exponentially shrinking sheet, Chin. Phys. Lett. 28 (2011) 074701.
[23] A. Ishak, Y.Y. Lok, I. Pop, Non-Newtonian power-law fluid flow past a shrinking sheet with suction, Chem. Eng. Commun. 199 (2012) 142–150.
[24] N.A. Yacob, A. Ishak, Micropolar fluid flow over a shrinking sheet, Meccanica 47 (2012) 293–299.
[25] C.Y. Wang, Stagnation flow towards a shrinking sheet, Int. J. Non-Linear Mech. 43 (2008) 377–382.
[26] E.M.A.Elbashbeshy, Radiation effect on heat transfer over a stretching surface, Can. J.Phys.78 (2000) 1107–1112.
[27] K. Bhattacharyya, S. Mukhopadhyay, G.C. Layek, Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet, Int. J. Heat Mass Transfer 54 (2011) 308–313.
[28] Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles, Developments and Applications of Non-Newtonian Flows. FED-vol.231/MDvol. 66: 99–105.
[29]. Li Y, Zhou J, Tung S, Schneider E, Xi S (2009) A review on development of nanofluid preparation and characterization. Powder Tech. 196: 89–101.
[30]. Kakac¸ S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transfer 52: 3187–3196.
[31]. N. Kishan and D Hunegnaw, “MHD Boundary Layer Flow and Heat Transfer Over a Non-Linearly Permeable Stretching/Shrinking Sheet in a Nanofluid with Suction Effect, Thermal Radiation and Chemical Reaction.” Journal of Nanofluids”, volume.3, pages1-9. 2014.
[32]. Wong KV, De Leon O (2010) Applications of nanofluids: current and future. Adv. Mech. Eng. 2010: Article ID 519659, 11 pages.
[33]. Saidur R, Leong KY, Mohammad HA (2011) A review on applications and challenges of nanofluids. Renew. Sust. Ener. Rev. 15: 1646–1668.
[34]. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S (2013) A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transfer 57: 582–594.
[35]. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transfer 46: 3639–3653.
[36]. Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided liddriven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transfer 50: 2002–2018.
[37]. Buongiorno J (2006) Convective transport in nanofluids. ASME J. Heat Transfer 128: 240–250.
[38]. Nield DA, Kuznetsov AV (2009) The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer 52: 5792–5795.
[39]. Kuznetsov AV, Nield DA (2010) Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49: 243–247.
[40] Srinivas Maripala and Kishan.N,” Unsteady MHD flow and heat transfer of nanofluid over a permeable shrinking sheet with thermal radiation and chemical reaction”, American Journal of Engineering Research (AJER) Volume-4, Issue-6, pp-68-79(2015).
[41]. Krishnendu Bhattacharyya, Swati Mukhopadhyay, G.C.Layek, studied the “Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet”. International Journal of Heat and Mass Transfer 55(2012) 2945-2952.
[42]S.K. Jena, M.N. Mathur, Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate, Int. J. Eng. Sci. 19 (1981) 1431–1439.
[43] G.S. Guram, A.C. Smith, Stagnation flow of micropolar fluids with strong and weak interactions, Comput. Math. Appl. 6 (1980) 213–233.
[44]G. Ahmadi, Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, Int. J. Eng. Sci. 14 (1976) 639–646.
[45] J. Peddieson, An application of the micropolar fluid model to the calculation of turbulent shear flow, Int. J. Eng. Sci. 10 (1972) 23–32.
[46] R.S.R.Gorla, Micropolar boundary layer flow at astagnation on a moving wall, Int. J. Eng.Sci. 21 (1983) 25–33.
[47]A. Ishak, R. Nazar, I. Pop, Heat transfer over a stretching surface with variable heat flux in micropolar fluids, Phys. Lett. A 372 (2008) 559–561.
[48] M.Q. Brewster, Thermal Radiative Transfer Properties, John Wiley and Sons,1972.
Srinivas Maripala, N. Kishan, "Nanofluid and Micropolar Fluid Flow over a Shrinking Sheet with Heat Transfer," International Journal of Mathematics Trends and Technology (IJMTT), vol. 48, no. 5, pp. 305-320, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V48P547