Volume 49 | Number 2 | Year 2017 | Article Id. IJMTT-V49P514 | DOI : https://doi.org/10.14445/22315373/IJMTT-V49P514
Ekta Mittal, Sunil Joshi,Rupakshi Mishra Pandey, "Study of a Generating Function Involving Generalised Lauricella Function," International Journal of Mathematics Trends and Technology (IJMTT), vol. 49, no. 2, pp. 119-124, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V49P514
[1] M. A. Chaudhry, S. M. Zubair, Generalized incomplete gamma functions with applications,J. Comput. Appl. Math. 55 (1994), 99–124.
[2] M. A. Chaudhry, A. Qadir, M. Rafique, S. M. Zubair, Extension of Euler’s beta function, J. Compt. Appl. Math. 78 (1997), 19–32.
[3] M. A. Chaudhry, A. Qadir, H. M. Srivastava, R. B. Paris, Extended hypergeometric and confluent hypergeometric function, Appl. Math. Comput. 159 (2004),589–602.
[4] M.A. Chaudhry, S.M. Zubair, On a Class of Incomplete Gamma Functions with Applications, CRC Press (Chapman and Hall), Boca Raton, FL, 2002.
[5] M. A. Chaudhry, S. M. Zubair, Extended incomplete gamma functions with applications,J. Math. Anal. Appl. 274 (2002), 725–745.
[6] E. Ӧzergin, M.A. Ӧzarslan , A. Altin, Extension of gamma, beta and hypergeometric function, Journal of Computational and Applied Mathematics, 235 (16),(2011), 4601–4610.
[7] M.A. Ӧzarslan, E. Ӧzergin, Some generating relations for extended hypergeometric function via generalized fractional derivative operator. Math. Comput. Model. 2010, 52, 1825–1833.
[8] E.D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted By Chelsea Publishing Company, Bronx, New York, 1971.
[9] D. M. Lee , A. K. Rathie, R. K. Parmar, Y. S. Kim, Generalization of ExtendedBeta Function, Hypergeometric and Confluent Hypergeometric Functions, Honam Mathematical Journal 33 (2) (2011), 187–206.
[10] R.K.Parmar, S.D.Purohit, K.s.Nisar, M.Aldaifallah, On a Generating function involving generalized second Appellfunction,Journal of Science and Arts,3(32)(2015),225-228.