Volume 49 | Number 2 | Year 2017 | Article Id. IJMTT-V49P517 | DOI : https://doi.org/10.14445/22315373/IJMTT-V49P517
Singular Value Decomposition (SVD) is a tool for teaching linear algebra geomatrically. In Linear algebra SVD is very usefulin many cases in problem solving. Some of the applications of SVD are,Image processing, Population related problems, Least square approximation in Numerical methods, Dimension reduction, Low rank data’s storage, Education related problems, Data composition. This paper discuss about fewer applications.
[1] Alter, O., P. O. Brown, and D. Botstein. 2000. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. USA.97:10101–10106. [PMC free article][PubMed]
[2] Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne. 2000. The Protein Data Bank. Nucleic Acids Res.28:235–242. [PMC free article][PubMed]
[3] Borgstahl, G. E. O., D. R. Williams, and E. D. Getzoff. 1995. 1.4 Ångstrom structure of photoactive yellow protein, a cytosolic photoreceptor: unusual fold, active site, and chromophore. Biochemistry.34:6278–6287. [PubMed]
[4] D. Kahaner, C. Moler, S. Nash, Numerical Methods and Software, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[5] R.D. Skeel, J.B. Keiper, Elementary Numerical Computing with Mathematica, McGraw-Hill, New York, NY, 1993.
[6] W.T. Shaw, J. Tigg, Applied Mathematica: Getting Started, Getting it Done, Addison-Wesley, Reading, MA, 1994.
Jajimogga Raghavendar, V.Dharmaiah, "Singular Value Decomposition & Few Application," International Journal of Mathematics Trends and Technology (IJMTT), vol. 49, no. 2, pp. 138-142, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V49P517