Volume 49 | Number 3 | Year 2017 | Article Id. IJMTT-V49P521 | DOI : https://doi.org/10.14445/22315373/IJMTT-V49P521
In the present paper we have studied quasi conformally flat 3dimensional quasi-Sasakian manifold and 3-dimensional quasi-sasakian manifold with C˜.S=0and 3-dimensional irrotational Quasi-sasakian . we also have studied that a pseudo projective φ recurrent 3 dimensional quasi sasakian manifold is η -Einstein if a+b6=0 .
[1] Blair, D.E-The theory of quasi-Sasakian structures, J.Differential Geometry 1(1967),331-345.
[2] Blair.D.E: contact m,anifolds in Riemannian Geometry, Lecture Notes in Mathematics 509, Springer-verlag, Berlin,New York,1976.
[3] Olszak,Z-Normal almost contact metric manifolds of dimension three,Ann.Pol.Math.47(1986).pp 41-50.
[4] Olszak,Z-On three dimensional conformally flat Quasi-Sasakian manifolds, Periodica Mathematica Hungarica,vol33(2),1996,pp 105-113.
[5] Chaki.M.C and Saha.S.K: On Pseudo-Projective Ricci Symmetric Manifolds, Bullgarian journal of Physics, 21 Nos 1/2 (1994),1-7.
[6] Gatti,N.B and Bagewadi,C.S-On Irrotational Quasi-conformal curvature, Tensor N.S,vol:64(2003) pp:248-258.
[7] Amus,K and Maralabhavi,Y.B- On quasi-Conformally flat spaces,Tensor N.S;31(1977),pp:194-199.
[8] Bhagwat, Prasad-A Pseudo Projective curvature tensor on a Riemannian manifolds, Bull.cal.Math.Soc.94(3),2002,163-166.
[9] De,U.C-On -recurrent Sasakian manifolds, Novisad J.Math 33(2),2003,43-48.
[10] Hicks, N.J- Notes on Differential Geometry, D.Van-Nostrand, Princeton,New Jersey,1965.
[11] Ghosh.Nandan and Tarafdar.Manjusha-On Three dimensional quasi-sasakian manifold,Tibilisi Mathematical Journal,9(1),(2016),pp 23-28.
Nandan Ghosh, "A Study on Three Dimensional Quasi-Sasakian Manifold," International Journal of Mathematics Trends and Technology (IJMTT), vol. 49, no. 3, pp. 156-164, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V49P521