Volume 49 | Number 3 | Year 2017 | Article Id. IJMTT-V49P524 | DOI : https://doi.org/10.14445/22315373/IJMTT-V49P524
Manoj Kumar Singh, Arvind K. Singh, "A New-Mean Type Variant of Newton´s Method for Simple and Multiple Roots," International Journal of Mathematics Trends and Technology (IJMTT), vol. 49, no. 3, pp. 174-177, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V49P524
[1] S. Weerakoon and T.C.I. Fernando: A variant of Newton's method with accelerated third-order convergence, Appl. Math. Lett., 13 (8), 87-93, (2000).
[2] W.F. Ford and J.A. Pennline, Accelerated convergence in Newton's method, SIAM Review, 38, 658-659, (1996)..
[3] J. Gerlach: Accelerated convergence in Newton's method, SIAM Review, 36, 272-276, (1994).
[4] R. Wait: The Numerical Solution of Algebraic Equations, John Wiley & Sons, (1979).
[5] M. Igarashi: A termination criterion for iterative methods used to find the zeros of polynomials, Math. Comp., 42, 165-171, (1984).
[6] A. Y. Ozban: Some new variants of Newton s method, Applied Mathematics Letters, 17, (2004), 677- 682.
[7] T. Lukic, and N. M. Ralevie: Geometric mean Newton’s method for simple and multiple roots, Applied Mathematics Letters, 21, (2008) 30-36
[8] M. Frontini, E. Sormani, Some variant of Newton’s method with third-order convergence, Appl. Math. Comput. 140 (2003) 419–426.
[9] Jinhai Chen, Some new iterative methods with three-order convergence, Appl. Math. Comput. 181 (2006) 1519–1522.