Volume 49 | Number 4 | Year 2017 | Article Id. IJMTT-V49P539 | DOI : https://doi.org/10.14445/22315373/IJMTT-V49P539
Let G be a nontrivial connected graph, a secure dominating set D of V is said to be a secure complementary tree dominating set if the induced subgraph < V – D > is a tree. A secure complementary tree dominating sets of the graph G, having minimum cardinality is called the secure complementary tree domination number denoted by γsctd of G. We have determined the exact values of secure complementary tree domination number for some standard graphs and obtained bounds for this new parameter. NORDHAUS – GADDUM type results are attained .The relationship of this parameter with other graph theoretical parameters are also discussed.
1. Cokayne E.J. and HedetniemiS.T.(1980): Total domination in
graphs. Networks, Vol.10:211-219
2. John Adrian Bondy, Murty U.S.R, G.T, springer, 2008.
3. A.P Burger, M.A Henning, and J.H. Yan vuren : Vertex cover
and secure Domination is Graphs, Questions Mathematicae,
31:2(2008) 163- 171.
4. E.Castillans, R.A Ugbinada and S Caney Jr.,secure Domination
in the Jain Graphs, Applied Mathematical sciences, Applied
Mathematical Science 8(105),5203-5211.
5. E.J Cockayne, O.Favaran, and C.M. Mynhardt secure
Domination, weak Romen Domiation and Forbidden
subgraphs, Bull Inst. Combin.Appl., 39(2003), 87-100.
6. E.J Cockayne, Irredendance, secure domination & Maximum
degree in tree, Discrete math, 307(2007)12-17.
7. Nordhaus E. A. and Gaddum J.W.(1956): On complementary
graphs, Amer. Math. Monthly, 63: 175-177.
8. Sampathkumar, E.;Wailkar, HB (1979): The connected
domination number of a graph, J Math. Phys. Sci 13(6):
607-613.
9. S.Muthammai and M.Bhanumathi,(2011):Complementary Tree
Domination Number of a Graph .IMF, vol. 6, 1273-1282.
10. V.R.Kulli and B. Janakiram (1996):The Non- Split
Domination Number of a Graph. Indian J. pure appl.
Math.,27(6) , 537-542.
11. Mahedavan G., SelvamA,N.Ramesh., Subramaian.T.,(2013):
Triple Connected complementary tree domination number
of a graph. IMF , vol.8, 659-670.
12. T.W Haynes , S.T. Hedetniemi and P.J Slater, Fundamentals
of domination in graphs, Marcel Dekker Inc., New
York(1998).
13. T.W Haynes, Stephen T, Hedetniemi and Peter S sloter,
domination in graphs. Advanced Topics, Marcel Dekker,
New York, 1990
S.E.Annie Jasmine, K.AmeenalBibi, "Secure Complementary Tree Domination Number of a Graph," International Journal of Mathematics Trends and Technology (IJMTT), vol. 49, no. 4, pp. 260-264, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V49P539