Volume 49 | Number 4 | Year 2017 | Article Id. IJMTT-V49P539 | DOI : https://doi.org/10.14445/22315373/IJMTT-V49P539
S.E.Annie Jasmine, K.AmeenalBibi, "Secure Complementary Tree Domination Number of a Graph," International Journal of Mathematics Trends and Technology (IJMTT), vol. 49, no. 4, pp. 260-264, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V49P539
1. Cokayne E.J. and HedetniemiS.T.(1980): Total domination in
graphs. Networks, Vol.10:211-219
2. John Adrian Bondy, Murty U.S.R, G.T, springer, 2008.
3. A.P Burger, M.A Henning, and J.H. Yan vuren : Vertex cover
and secure Domination is Graphs, Questions Mathematicae,
31:2(2008) 163- 171.
4. E.Castillans, R.A Ugbinada and S Caney Jr.,secure Domination
in the Jain Graphs, Applied Mathematical sciences, Applied
Mathematical Science 8(105),5203-5211.
5. E.J Cockayne, O.Favaran, and C.M. Mynhardt secure
Domination, weak Romen Domiation and Forbidden
subgraphs, Bull Inst. Combin.Appl., 39(2003), 87-100.
6. E.J Cockayne, Irredendance, secure domination & Maximum
degree in tree, Discrete math, 307(2007)12-17.
7. Nordhaus E. A. and Gaddum J.W.(1956): On complementary
graphs, Amer. Math. Monthly, 63: 175-177.
8. Sampathkumar, E.;Wailkar, HB (1979): The connected
domination number of a graph, J Math. Phys. Sci 13(6):
607-613.
9. S.Muthammai and M.Bhanumathi,(2011):Complementary Tree
Domination Number of a Graph .IMF, vol. 6, 1273-1282.
10. V.R.Kulli and B. Janakiram (1996):The Non- Split
Domination Number of a Graph. Indian J. pure appl.
Math.,27(6) , 537-542.
11. Mahedavan G., SelvamA,N.Ramesh., Subramaian.T.,(2013):
Triple Connected complementary tree domination number
of a graph. IMF , vol.8, 659-670.
12. T.W Haynes , S.T. Hedetniemi and P.J Slater, Fundamentals
of domination in graphs, Marcel Dekker Inc., New
York(1998).
13. T.W Haynes, Stephen T, Hedetniemi and Peter S sloter,
domination in graphs. Advanced Topics, Marcel Dekker,
New York, 1990