Volume 49 | Number 6 | Year 2017 | Article Id. IJMTT-V49P554 | DOI : https://doi.org/10.14445/22315373/IJMTT-V49P554
This paper aims to focus on some labeling methods of Holiday Star Graph. We investigate Holiday Star Graph with six types of labeling; Cordial, H-cordial, Prime, Total prime, Vertex prime, Difference cordial.
[1] I. Cahit, Cordial Graphs: A weaker version of graceful and harmonious Graphs, Ars Combinatoria, 23(1987), 201-207.
[2] T. Deretsky, S. M. Lee and J. Mitchem, On Vertex Prime Labelings of Graphs, In: J. Alvi, G. Chartrand, O. Oellerman, A. Schwenk, Eds., Graph Theory, Combinatorics and Applications: Proceedings of the 6th International Conference Theory and Applications of Graphs, Wiley, New York, 1(1991), 359-369.
[3] H. L. Fu and K. C. Huang, on prime labelings, Discrete Mathematics, 127(1994), 181-186.
[4] J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics 19 (2016), \#DS6. Online: http://www.combinatorics.org
[5] J. Gross and J. Yellen, Graph Theory and Its Applications, CRC Press, Boca Raton, 1999.
[6] S. M. Lee, A. Liu, A construction of cordial graphs from smaller cordial graphs, Ars Combinatoria, 32(1991), 209- 214.
[7] S. M. Lee, I. Wui and J. Yeh, On the Amalgamation of Prime Graphs, Bulletin of the Malaysian Mathematical Sciences Society (Second Series), 11(1988), 59-67.
[8] Ponraj R, Narayanan SS. Difference cordiality of some graphs obtained from double alternate snake graphs. Global Journal of Mathematical Sciences: Theory and Practical 5(2013),167-175.
[9] Ponraj R, Narayanan SS. Further results on difference cordial labeling of corona graphs. J Indian Acad Math 35(2013),217-235.
[10] Ponraj R, Narayanan SS, Kala R. Difference cordial labeling of graphs. Global Journal of Mathematical Sciences: Theory and Practical 3(2013),193-201.
[11] Ponraj R, Narayanan SS, Kala R. Difference cordial labeling of graphs obtained from double snake. International Journal of Mathematics Research 5(2013),317- 322.
[12] Ponraj R, Narayanan SS, Kala R. A note on difference cordial graphs. Palestine Journal of Mathematics 4(2015), 189-197.
[13] U. M. Prajapati and R. M. Gajjar, Cordial Labeling of Complement of Some Graph. Mathematics Today, 30(2015), 99-118.
[14] U. M. Prajapati and R. M. Gajjar, Cordial Labeling in the Context of Duplication of some Graph Elements. International Journal of Mathematics and Soft Computing, 6(2016), 65-73.
[15] Ramasubramanian, R. Kala, Total Prime Graph, International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 5.
[16] A.Tout, A.N. Dabbouey and K.Howalla, Prime Labeling of graphs, National Academy Science Letters, 11(1982), 365- 368.
[17] S. K. Vaidya and U. M. Prajapati, Some Results on Prime and K-Prime Labeling, Journal of Mathematics Research, 3(2011), 66-75.
[18] S. K. Vaidya and U. M. Prajapati, Some Switching Invariant Prime Graphs, Open Journal of Discrete Mathematics, 2(2012), 17-20.
[19] R. Yilmaz and I. Cahit, E-cordial graphs, Ars Combin., 46(1997), 251-266.
U. M. Prajapati, R. M. Gajjar, "Labeling Techniques of Holiday Star Graph," International Journal of Mathematics Trends and Technology (IJMTT), vol. 49, no. 6, pp. 339-344, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V49P554