Volume 4 | Issue 11 | Year 2013 | Article Id. IJMTT-V4I11P11 | DOI : https://doi.org/10.14445/22315373/IJMTT-V4I11P11
A function f: (X,τ) → (Y,σ) is called g # p -continuous[2] if f -1 (V) is g # p -closed in(X,τ) for every closed set V in (Y,σ). The notion of contra continuity was introduced and investigated by Dontchev[6]. In this paper we introduce and investigate a new generalization of contra continuity called contra g # p -continuity.
[1] M.E. Abd El-Monsef, S.N. El- Deeb and R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
[2] K.Alli.,S.Pious Missier and A.Subramanian.,on g# p-continuous maps in topological spaces, International Journal of Modern Engineering Research,Vol.3,Issue 1,Jan-Feb.(2013) 360- 364.
[3] D. Andrijevic, Semi-pre-open sets. Mat.Vesnik., 38(1986), 24-32.
[4] P. Bhattacharya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian. J.Math., 29(3)(1987), 375-382.
[5] M. Caldas and S. Jafari, Some properties of contra β-continuous functions, mem.Fac.Sci. Kochi Univ. Ser. A Math., 22(2001), 19-28.
[6] J.Dontchev, Contra continuous functions and strongly S-closed spaces, Int.Math. Math.Sci.,19(2)(1996), 303-310.
[7] J. Dontchev and T. Noiri, Contra semi-continuous functions, Math. Pannon., 10(2)(1999), 159-168.
[8] S. Jafari and T. Noiri, Contra α-continuous functions between topological spaces, Iran. Int. J. Sci., 2(2)(2001), 153-167.
[9] S. Jafari and T. Noiri, On contra pre-continuous functions, Bull. Malays. Math Sci. Soc., 25(2)(2002), 115- 128.
[10] D.S. Jankovic, On locally irreducible space, Anna. De. La. Soc. Sci. de bruxelles, 97(2)(1983), 59-72.
[11] N. Levine, Semi-open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
[12] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
[13] A.S. Mashhour, M.E Abd El-Monsef and S.N El-Deeb, On pre-continuous and weak pre-continuous functions, Proc. Math.
K.Alli, "Contra g#p-Continuous Functions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 4, no. 11, pp. 350-356, 2013. Crossref, https://doi.org/10.14445/22315373/IJMTT-V4I11P11