Volume 4 | Issue 11 | Year 2013 | Article Id. IJMTT-V4I11P4 | DOI : https://doi.org/10.14445/22315373/IJMTT-V4I11P4
In this paper to extend and generalize lists of characterizations of k-normal and k-hermitian matrices known in the literature, by providing numerous sets of equivalent conditions referring to the notions of conjugate transpose, Moore-Penrose and group inverse.
[1]. S.Krishnamoorthy and R.Subash, “On k-normal matrices”, International J. of Math. Sci. & Engg. Appls. 5(II) (2011), 119-130.
[2]. R.Penrose, “A Generalized inverse for matrices” Proc.Cambridge Philos.Soc., 51(1955), 406-413.
[3]. G.Wang , Y.Wei and S.Qiao, “Generalized Inverses” Theory and Computations, Science Press (Beijing) 2004.
[4]. R.D.Hill and R.S.Water, “On k-real and k-hermitian matrices,” Linear Alg. Appl. Vol.169(1992), pp.17-29.
[5]. L.Elsner and Kh.D.Ikramov, Normal matrices: an update, Linear Algebra Appl. 285(1998), 291-303.
[6]. Oskar Maria Baksalary and Gotz Trenkler, “Characterizations of EP, Norma and Hermitian matrices” Linear and Multilinear Alg. Vol.56, No.3 (2008), 299-304.
B.K.N.Muthugobal , R.Subash, "Characterizations of k-normal matrices," International Journal of Mathematics Trends and Technology (IJMTT), vol. 4, no. 11, pp. 280-287, 2013. Crossref, https://doi.org/10.14445/22315373/IJMTT-V4I11P4