Volume 4 | Issue 3 | Year 2013 | Article Id. IJMTT-V4I3P502 | DOI : https://doi.org/10.14445/22315373/IJMTT-V4I3P502
Let G (V, E) be a graph with p vertices and q edges. A bijection f : V E {1,2,…., p+q} is called a super magic labeling of a graph G, if f(V) = {1, 2,…., p} and for any edge xyE, f(x)+f(y)+f(xy) = c(f), a constant. The super magic strength of a graph G, sm(G) is defined as the minimum of all c(f) where the minimum runs over all super magic labelings f of G. Recently a new version of super magic labeling has been introduced. For the graph G(V, E), a bijection f : V E {1, 2,…., p+q} is called a super magic (special) labeling of G, if f(E) = {1, 2,…., q} for any edge xyE such that f(x)+f(y)+f(xy) = c'(f), a constant. The super magic (special) strength of a graph G, sms(G) is defined as the minimum of all c'(f) where the minimum is taken over all super magic special labelings f of G. In this paper, we prove that sms(G) = 2q-p+sm(G).
[1]. D .G. Akka and Nanda S. Warad, Super magic strength of a graph, Indian J. Pure Appl. Math., 41 (4) (2010), 557-568.
[2]. Selvam Avadayappan, R. Vasuki and P. Jeyanthi, Magic strength of a graph, J. Pure Appl. Math., 31(7) (2000), 873-883.
[3]. Selvam Avadayappan, P. Jeyanthi and R. Vasuki, Super magic strength of a graph, J. Pure Appl. Math., 32 (11) (2001), 1621-1630.
[4]. R. Balakrishnan and K. Ranganathan, A text book of graph theory, Springer, NewYork (2000).
[5]. H. Enomoto, A. S. Llado, T. Nakamigawa and G. Ringel, Super edge - magic graphs, SUT J.Math., 34 (2) (1998), 105-109.
[6]. A .Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull, 13 (4) (1970) 451-461.
[7]. G. Ringel and A. S. Llado, Another tree conjecture, Bull. ICA, 18 (1996) 83- 85.
[8]. V.Swaminathan and P.Jeyanthi, “Strong Super Edge-magic Graphs”, The Mathematics Education, Vol.XLII.No.3, (2008),156-160.
Selvam Avadayappan, S. Kalaimathy, P. Mahalakshmi, "Equivalence Of Super Magic Labelings," International Journal of Mathematics Trends and Technology (IJMTT), vol. 4, no. 3, pp. 53-57, 2013. Crossref, https://doi.org/10.14445/22315373/IJMTT-V4I3P502