Volume 4 | Issue 4 | Year 2013 | Article Id. IJMTT-V4I4P2 | DOI : https://doi.org/10.14445/22315373/IJMTT-V4I4P2
In this paper we prove a tripled coincidence point theorem for compatible mapping in fuzzy metric space. Our aim of this paper is to improve the result of "A. Roldan, J. M. Moreno, C. Roldan," Tripled fixed point theorem in fuzzy metric spaces and applications", Fixed point theory and applications, doi:10.1186/1687-1812-2013-29." Our technique for the proof of the theorem is different. We also give an example in support of our theorem
[1]Zadeh LA. Fuzzy sets. Inform Control 1965;8:338-53.
[2]. A.George, P.Veeramani, On some result in fuzzy metric space,Fuzzy Sets Syst. 64(1994)395-399.
[3]. I.Kramosil, J.Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11(1975)326-334.
[4]. Deschrijver G, Kerre EE. On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst 133(2003) 227-35.
[5]. Fang JX. On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst 46(1992) 107-13.
[6]. Gregori V, Sapena A. On fixed-point theorem in fuzzy metric spaces. Fuzzy Sets Syst 125(2002) 245-52.
[7]. Jungck G. Commuting maps and fixed points. Am Math Mon 83(1976) 261-3.
[8]. Rodriguez Lopez J, Ramaguera S. The Hausdorff fuzzy metric on compact sets. Fuzzy Sets Syst 147(2004) 273-83.
[9]. Mihet D. A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets Syst 144(2004) 431-9.
[10]. M.Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst .27(1988)385-389.
[11]. O. Hadzic, E.Pap, Fixed Point Theory in Probabilistic Metric Space, Kluwer Academic Publishers, Dordrecht, 2001.
[12]. E.P.Klement, R.Mesiar,E.Pap,Triangular Norms, Kluwer Academic Publishers,Dordrecht,2000.
[13]. J.Rodriguez Lopez, S.Romaguera, The Hausdorff fuzzy metric on compact sets,Fuzzy Sets Syst.147 (2004) 273-283.
[14]. V. Berinde, M. Borcut, "Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces," Nonlinear Anal. 74(2011)4889-4897.
[15]. A. Roldan, J. M. Moreno, C. Roldan," Tripled fixed point theorem in fuzzy metric spaces and applications", Fixed point theory and applications, doi:10.1186/1687-1812-2013-29.
Animesh Gupta, Rohit Narayan, R.N. Yadava, "Tripled Fixed Point for Compatible mappings in Partially Ordered Fuzzy Metric Spaces," International Journal of Mathematics Trends and Technology (IJMTT), vol. 4, no. 4, pp. 65-77, 2013. Crossref, https://doi.org/10.14445/22315373/IJMTT-V4I4P2