Volume 50 | Number 2 | Year 2017 | Article Id. IJMTT-V50P514 | DOI : https://doi.org/10.14445/22315373/IJMTT-V50P514
In hopes that it will be useful to a wide audience, a long list of conditions on an n X n quaternion matrix A, equivalent to its being quaternion quasi-normal, is presented. In most cases, a description of why the condition is equivalent to quasi-normality is given.
1. E. Deutsch, P. M. Gibson and H. Schneider: The Fuglede-Putnam theorem and normal products of matrices; Linear Algebra Appl. 13:53-58(1976).
2. M. P. Drazin: On diagonable and normal matrices; Quart. J. Math. Oxford Ser.(2) 2:189-198(1951).
3. M. P. Drazin, J. W. Dungey and K. W. Gruenberg: Some theorems on commutative matrices; J. London Math. Soc. 26:2221-228(1951).
4. J. Hoffman and O. Taussky: A characterization of normal matrices; J. Res. Nat. Bur. Standards 52:17-19(1954).
5. H. Schneider: Theorems on normal matrices; Quarterly J. math. Oxford Ser. (2) 3:241-249 (1952).
6. Robert Grone, Charles R. Johnson, Eduardo M. Sa and Henry Wolkowicz: Normal matrices; Linear Algebra Appl. 87:213-225(1987).
K. Gunasekaran, J. Rajeswari, "Quaternion Quasi-Normal Matrices," International Journal of Mathematics Trends and Technology (IJMTT), vol. 50, no. 2, pp. 101-103, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V50P514