Volume 50 | Number 4 | Year 2017 | Article Id. IJMTT-V50P539 | DOI : https://doi.org/10.14445/22315373/IJMTT-V50P539

In this paper we introduce Differential subordination with Hadamard Product (Convolution) of Generalized k- Mittag-Leffler function and A Class of Function in the Open Unit Disk D={z ∈ C:|z|<1}, Which are expressed in terms of the A Class of Function. Some interesting special cases of our main results are also considered.

[1] Dorrego, G. A., and Cerutti, R. A., 2012, “The k-Mittag-Leffler function,” Int. J. Contemp. Math. Sci., 7, pp. 705-716.

[2] Garg, M., Manoha, P., and Kalla, S.L., 2013, “A Mittag-Leffrer-type function of two variables,” Integral Transforms Spec. Funct., 24(11), pp. 934–944.

[3] Gehlot, K. S., 2012, “The Generalized k-Mittag-Leffler function,” Int. J. Contemp. Math. Sci., 7, pp. 2213-2219.

[4] Khan, M. A., and Ahmed, S., 2013, “On some properties of the generalized Mittag-Leffler function,” Springer Plus, 2, pp. 1-9.

[5] Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J., 2006, “Theory and Applications of Fractional Differential Equations,” North- Holland Mathematics Studies, 204.

[6] Kiryakova, V., 1994, “Generalized fractional calculus and applications,” Pitman Research Notes in Mathematics Series, 301.

Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York.

[7] Kiryakova, V., 2000, “Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, Higher transcendental functions and their applications,” J. Comput. Appl. Math., 118, pp. 1-2, 241–259.

[8] Kiryakova, V., 2010, “The multi-index Mittag-Le_er functions as an important class of special functions of fractional calculus,” Comput. Math. Appl. 59 (5), pp. 1885–1895.

[9] Kiryakova, V., 2011, “Criteria for univalence of the Dziok-Srivastava and the Srivastava-Wright operators in the class A,” Appl. Math. Comput. 218 (3), pp. 883–892.

[10] Mainardia, F., and Gorenflo, R., 2000, “On Mittag-Leffler-type functions in fractional evolution processes.” J. Comput. Appl. Math., 118, pp. 283–299.

[11] Miller, S.S., and Mocanu, P.T., 1985, “On some classes of first-order differential subordinations,” Michigan Math. J. 32, no.2, pp.185-195.

[12] Miller, S.S., and Mocanu, P.T., 2000, “Differential Subordinations: Theory and Applications, Series in Pure and Applied Mathematics,” No.225. Marcel Dekker, Inc., New York.

[13] Mittag-Leffler, G. M., 1903, “Sur la nouvelle function Eα(x),” CR Acad. Sci. Paris, 137, pp. 554-558.

[14] Mittag-Leffler, G. M., 1905, “Sur la representation analytique d'une branche uniforme d'une function monogene,” Acta Math., 29, pp. 101-181.

[15] Ozarslan, M. A., and Yılmaz, B., 2014, “The extended Mittag-Leffler function and its properties,” J. Inequal. Appl., 10 pp.

[16] Podlubny, I., 1999, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA. 198.

[17] Prabhakar, T. R., 1971, “A singular integral equation with a generalized Mittag-Leffler function in the Kernel,” Yokohama Math. J., 19, pp. 7-15.

[18] Prajapati, J.C., Jana, R.K., Saxena, R.K., and Shukla, A.K., 2013, “Some results on the generalized Mittag-Leffler function operator,” J. Inequal. Appl. 2013(6) pp

[19] Rainville, E. D., 1960, Special Functions, The Macmillan Co., New York.

[20] Salim, T. O., 2009, “Some properties relating to the generalized Mittag-Leffler function,” Adv. Appl. Math. Anal., 4, pp. 21-30.

[21] Salim, T. O. and Ahmad, W. F., 2012, “A generalization of integral operator associated with fractional calculus,” J. Fract. Calc. Appl., 3, pp. 1-13.

[22] Shekhawat, A.S., Goyal, P.C., 2017, “Hadamard Product (Convolution) of Generalized k-Mittag-Leffler Function and A Class of Function” Global J. of Pure and appl. Math. 13(5), pp. 1473-1483.

[23] Shukla, A. K., and Prajapati, J. C., 2007, “On a generalization of Mittag-Leffler function and its properties,” J. Math. Anal. Appl., 336, pp. 797-811.

[24] Srivastava, H.M., 2007, “Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators,” Appl. Anal. Discrete Math. 1(1), pp. 56-71.

[25] Srivastava, H. M., and Tomovski, Z., 2009, “Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel,” Appl. Math. Comput., 211, pp. 198-210.

[26] Tomovski, Z., Hilfer, R., and Srivastava, H.M., Srivastava, 2010, “Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions,” Integral Transforms Spec. Funct. 21 (11), pp. 797–814.

[27] Tomovski, Z., 2012, “Generalized Cauchy type problems for nonlinear fractional differential equations with composite fractional derivative operator,” Nonlinear Anal. 75 (7), pp. 3364–3384.

[28] Wiman, A., 1905, “Uber de fundamental satz in der theorie der funktionen Ea(x),” Acta Math., 29, pp. 191-201.

Prakash Chand Goyal, Ashok Singh Shekhawat, "Differential Subordination with Hadamard Product of Generalized k-Mittag-Leffler Function and a Class of Function," *International Journal of Mathematics Trends and Technology (IJMTT)*, vol. 50, no. 4, pp. 235-243, 2017. *Crossref*, https://doi.org/10.14445/22315373/IJMTT-V50P539