Volume 50 | Number 5 | Year 2017 | Article Id. IJMTT-V50P549 | DOI : https://doi.org/10.14445/22315373/IJMTT-V50P549
Kimuya .M. Alex, Josephine Mutembei, "The Cube Duplication Solution (A Compass straightedge (Ruler) Construction)," International Journal of Mathematics Trends and Technology (IJMTT), vol. 50, no. 5, pp. 307-315, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V50P549
[1] Wantzel, P.L., “Recherches sur les moyens de reconnaitre si un problème de géométrie peut se résoudre avec la règle et le compass”, Journal de Mathematiques pures et appliques, 1837.
[2] Tom Davis, “Classical Geometric Construction”, <http://www.geometer.org/mathcircles>, December 4, 2002.
[3] University of Toronto, “The Three Impossible Constructions of Geometry”, < mathnet@math.toronto.edu>, 14 Aug, 1997.
[4] B. Bold, “The Delian problem, in: Famous Problems of Geometry and How to Solve Them”, New York: Dover, 1982.
[5] Burton, David M., “A History of Mathematics: An Introduction, 4th Ed”., McGraw-Hill, p. 116, 1999.
[6] English cube from Old French < Latin cubus < Greek κύβος (kubos) meaning "a cube, a die, vertebra". In turn from PIE*keu(b)-, "to bend, turn"
[7] Wantzel, P.L., “Recherches sur les moyens de reconnaitre si un problème de géométrie peut se résoudre avec la règle et le compass”, Journal de Mathematiques pures et appliques, pp. 366-372, 1837.
[8] C.A.Hart and Daniel D Feldman, “Plane and Solid Geometry”, American Book Company, Chicago, 1912, 2013, p.96, p.171.
[9]Rich Cochrane, et.al, “Euclidean Geometry”, Fine Art Maths Centre, October 2015.
[10] W, Dunham,”The Mathematical Universe”, John Wiley & Sons, Inc., New York, 1994.
[11] Francois Rivest and Stephane Zafirov, “Duplication of the cube”, <http://www.cs.mcgill.ca/~cs507/projects/>, Zafiroff, 1998.
[12] H. Dorrie, “The Delian cube-doubling problem, in: 100 Great Problems of Elementary Mathematics: Their History and Solutions”, New York: Dover, 1965.
[13] . A. Janes,S.Morris, and K.Pearson,Abstruct “Algebra and Famous Impossibilities”, Springer-verlag, New York, 1991.
[14] W. R. Knorr, “The Ancient Tradition of Geometric Problems”, Boston, 1986.
[15]Weisstein,w.Eric,“CubeDuplication”,<http://mathworld.wolfra m.com/AngleTrisection.html>,1999.
[16]J.H. Conway and R.K Guy, “The Book of Numbers”. New York, Springer-Verlag, 1996.
[17] I.Thomas, “Selections Illustrating the History of Greek Mathematics”, William Heinemann, London, and Harvard University Press, Cambridge, MA. 1939, 1941.
[18]F. Klein, "The Delian Problem and the Trisection of the Angle." Ch. 2 in "Famous Problems of Elementary Geometry: The Duplication of the Cube, the Trisection of the Angle, and the Quadrature of the Circle." In Famous Problems and Other Monographs. New York: Chelsea, 1980, pp. 13-15.
[19] Nguyên Tân Tài, “Doubling a Cube”, <http://www.dakhi.com- 2vol.htm>, 2011.
[20] University of Wisconsin, “Duplicating the Cube”, <www.uwgb.edu/.../dupl.htm>, Wisconsin-Green Bay, 6 September 2001.
[21]M. Kac, S. M. Ulam, “Mathematics and Logic”, Dover Publications, 1992.
[22]C.S.Ogilvy, “Excursions in Geometry”, Dover, New York, 1990, pp.135-138.
[23]R. Courant, H. Robbins, I. Stewart, “What Is Mathematics?”, Oxford University Press, 1996.
[24] D. E.Smith, “History of Mathematics”, Dover Publications, New York. vol. 1, 1923.
[25]J.O.Connorand E.F.Robertson, “Doubling the cube”, <http://www-history.mcs.standrews. ac.uk/HistTopics/Doubling_the_cube.html>, April 1999.
[26]D.Wells, “The Penguin Dictionary of Curious and Interesting Geometry”, London: Penguin, 1991, pp. 49-50.
[27]Kristóf Fenyvesi et.al, “Two Solutions to an Unsolvable Problem”, Connecting Origami and GeoGebra in a Serbian High School, Proceedings of Bridges 2014.
[28] Demaine, Erik D. - O'Rourke, Joseph, “Geometric Folding Algorithms, Linkages, Origami, Polyhedra. Cambridge”, Cambridge University Press (2007).
[29] Boakes, Norma, “Origami-Mathematics Lessons, Paper Folding as a Teaching Tool”, Mathitudes 1(1) (2008), 1-9.
[30] R. DESCARTES, “La Géométrie”, C. Angot, Paris, 1664 (first published in 1637).