Volume 51 | Number 1 | Year 2017 | Article Id. IJMTT-V51P508 | DOI : https://doi.org/10.14445/22315373/IJMTT-V51P508
In this paper, we made an attempt to study the properties of T-fuzzy ideal of a ℓ-near-ring and we introduce some theorems an onto homomorphic image, an epimorphic pre-image of a T-fuzzy ideal of a ℓ-near-ring.
[1] Abu Osman, M.T., On some product of fuzzy subgroups, Fuzzy Sets and Systems 24 (1987), 79-86.
[2] Akram, M., On T-fuzzy ideals in near-rings, Int. J. Math. Math. Sci. Volume 2007 (2007), Article ID 73514,14 pages
[3] Ayyappan, M., and Natarajan, R., Lattice ordered near rings, Acta Ciencia Indica, 1038(4), (2012) 727-738.
[4] Barnes, W.E., On the Γ-rings of Nobusawa, Pacific J. Math. 18 (1966), 411-422.
[5] Booth, G.L., A note on Γ near-rings, Studia. Sci. Math. Hungar. 23 (1988) 471-475.
[6] Coppage, W.E., and Luh, J., Radicals of gamma-rings, J. Math. Soc. Japan 23 (1971), 40-52.
[7] Chandrasekaran, G., Chellappa, B., and Jeyakumar, M., Some theorems on T – anti-fuzzy ideals of a near-ring, International Journal of Mathematics Trends and Technology. Volume 49, Number 5, 2017, pp 316-320.
[8] Dheena, P., and Mohanraaj, G., T-fuzzy ideals in rings, International Journal of Computational Cognition 2 (2011) 98-101.
[9] Dudek. W.A., and Jun. Y.B., Fuzzy subquasigroups over a t-norm, Quasigroups and Related Systems 6 (1999), pp.87- 98.
[10] Liu, W., Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982) 133-139.
[11] Nobusawa, N., On a generalization of the ring theory, Osaka J. Math. 1 (1964), 81-89.
[12] Satyanarayana, Bh., and Syam Prasad, K., On Fuzzy cosets of Gamma near-rings, Turkish J. Math. 29 (2005) 11-22.
[13] Schweizer, B., and Sklar, A., Statistical metric spaces, Pacific Journal of Mathematics. 10 (No. 1) (1963), 313-334.
[14] Srinivas, T., Nagaiah, T., and Narasimha Swamy, P., Anti fuzzy ideals of Γ near-rings, Ann. Fuzzy Math. Inform. 3(2) (2012) 255-266.
[15] Wang-jin Liu., Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8(2) (1982) 133- 139.
[16] Yu, J., Mordeson, N., and Cheng, S.C., Elements of Lalgebra, Lecture Notes in Fuzzy Math. and Computer Sciences, Creighton Univ., Omaha, Nebraska 68178, USA (1994).
[17] Yu, Y.-D., and Wang, Z.-D., TL-subrings and TL-ideals part1: basic concepts. Fuzzy Sets and Systems, 68 (1994), 93–103.
[18] Zadeh, L.A., Fuzzy sets, Inform. and Control, 8 (1965), 338-353.
G. Chandrasekaran, B.Chellappa, M. Jeyakumar, "Homomorphism on T – Fuzzy Ideal of ℓ- Near- Rings," International Journal of Mathematics Trends and Technology (IJMTT), vol. 51, no. 1, pp. 63-69, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V51P508