Volume 51 | Number 2 | Year 2017 | Article Id. IJMTT-V51P516 | DOI : https://doi.org/10.14445/22315373/IJMTT-V51P516
Anju Panwar, Ravi Prakash Bhokal, "Convergence and (S,T )- Stability Almost Surely for Random Jungck-Noor Type Iterative Scheme with Convergence Comparison," International Journal of Mathematics Trends and Technology (IJMTT), vol. 51, no. 2, pp. 129-135, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V51P516
[1] Berinde, V., Iterative approximation of fied points, Springer, 2007.
[2] Berinde, V., On the convergence of the Ishikawa iteration in the class of quasi-contractive operators, Acta mathematica universitatis comenianae, 73, 119-126, 2004.
[3] Bharucha-Reid, A.T., Random integral equations, Academic press, New-York, 1972.
[4] Hans, O., Reduzierende Zufallige transformationen, Czechoslovak Mathematical Journal, 7(82) 154-158, 1957.
[5] Hans, O., Random operator equations, Proceeding of 4th Bereley symops. Math. Ststist. and Prof. Vol. II, University of California, Part-1, 185-202, 161.
[6] Itoh, S., Random fixed point theorems with an application to random differential equation in Banach spaces, J. Math. Anal.Appl., 67(2), 261-273, 1979.
[7] Ishikawa, S., Fixed point by a new iteration method, Proceedings of American mathematical society, 44, 147-150, 1974.
[8] Jungck, G., Commuting mappings and fixed points, The American Mathematical Monthly, 83, 261-263, 1976.
[9] Mann, W.R., Mean value method in iteration, Proceedings of American mathematical society, 4, 506-510, 1953.
[10] Okeke G.A. and Kim, J.K., Convergence and (S,T)-stability almost surely for random Jungck type iteration process with applications, Cogent Mathematics, 1-15, 201.
[11] Okeke G.A. and Kim, J.K., Convergence and summable almost T stable of random Picard-Mann hybrid iterative process, Journal of inequalities and applications, 290, 2015.
[12] Okeke G.A. and Abbas, M., Convergence and almost sure T- stability of a random iterative sequence generated by a generalized random operator, Journal of inequalities of applications, 146, 2015.
[13] Olatinwo, M.O., Some stability and strong convergence results for Jungck-Ishikawa iteration process, Creative Mathematicas and Informatics, 17, 33-42, 2008.
[14] Rashwan, R.A., Hammad, H.A. and Okeke, G. A., Convergence and almost sure (S,T)- stability for random iterative schemes, international journal of advances in mathematics, 1, 1-16, 2016.
[15] Singh, S.L., Bhatnagar, C. and Mishra, S.N., Stability of Jungck type iterative procedure, International journal of mathematics and mathematical science, 19, 3035-3043, 2005.
[16] Speck, A., Zufallige Gleichungen, Czechoslovak Mathematical Journal, 5(80) 462-466, 1955.
[17] Zhang S.S., Wang, X.R. and Liu, M., Almost sure T- stability and convergence for random iterative algorithms, Applied mathematics and mechanics(English edition), 32, 805-810, 2011.