Volume 51 | Number 2 | Year 2017 | Article Id. IJMTT-V51P518 | DOI : https://doi.org/10.14445/22315373/IJMTT-V51P518
We have formulated Binet`s formula for Generalized (k, r) Fibonacci numbers. Also we have obtained some identities, including generating function for (k, r) Fibonacci sequence.
[1] D. Brod, K. Piejko and I. Wloch, Distance Fibonacci numbers, distance Lucas numbers and their applications, Ars Combinatoria, CXII(2013), 397- 410.
[2] I. Wloch, U. Bednarz, D. Brod, A. Wloch and M. Wolowiecz-Musial, On a new type of distance Fibonacci numbers, Discrete Applied Mathematics, 161(2013), 2695-2701.
[3] S. Falcon and A. Plaza, On the Fibonacci k-numbers, Chaos, Solitons &Fractals, 32(5) (2007), 1615-24.
[4] S. Falcon and A. Plaza, The k-Fibonacci sequence and the Pascal 2- triangle, Chaos, Solit. & Fract., 33(1) (2007), 38-49.
[5] S. Falcon and A. Plaza, On k-Fibonacci numbers of arithmetic indexes, Applied Mathematics and Computation, 208(2009), 180-185.
[6] S. Falcon, Generalized (k, r) – Fibonacci number, Gen. Math. Notes, 25(2)(2014), 148-158.
[7] Y.K. Gupta, K. Sisodiya, M. Singh, Generaliation of Fibonacci sequence and related properties, Research Journal of Computation and Mathematics 3(2)(2015).
Ashwini Panwar, Kiran Sisodiya, G.P.S. Rathore, "On Some identities for Generalized (k, r) Fibonacci Numbers," International Journal of Mathematics Trends and Technology (IJMTT), vol. 51, no. 2, pp. 146-148, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V51P518