Volume 51 | Number 3 | Year 2017 | Article Id. IJMTT-V51P530 | DOI : https://doi.org/10.14445/22315373/IJMTT-V51P530
In this paper, we discuss different properties of positive elements in the tensor product of two C*-algebras. Considering the cone of positive elements in a C*-algebra A, we define a cone norm on the set of Hermitian elements of A. Some results regarding positive forms in the tensor product are also derived here.
[1] D.P. Blecher, Geometry of the tensor product of C*-algebras, Math.Proc.CambridgePhilos.Soc., 104 (1988), 119-127.
[2] C.H. Chu, C*-algebras , Queen Mary,University of London.
[3] K. Conard,Tensor product II. [www.math.uconn.edu].
[4] J.Dixmier, C*-algebras, North-Holland Publishing Company, (1977).
[5] M.E.Gordji,M.Ramezani,H.Khodaei andH.Baghani, cone normed spacesarXiv:0912.0960v1[math.FA] 4 Dec, 2009.
[6] N.Goswami, A Type of Positive form on Involutive Measure Algebras,Antarctica J.Math., 8(2) (2011), 159-166.
[7] A.Guichardet, Tensor products of C*-algebras, Arhus Universitet, Matematisk Institute, (1969).
[8] H.L.Guang and Z.Xian, Cone metric spaces and fixed point theorems ofcontractive mappings, J. Math.Anal. Appl., 332 (2007)1468-1476.
[9] S.H.Jah and M.S.Ahmed, Positive-Normal Operators in Semi-HilbertinSpaces, Int. Math. Forum, vol.9, (2014) no. 11, 533-559.
[10] S.Kaijser and A.M.Sinclair, Projective tensor products of C*-algebras,Math.Scand 65 (1984), 161-187.
[11] A.S.Kavruk, Complete positivity in opeartor algebras, M.Sc. thesis,Bilkent University (2006).
[12] G.J.Murphy, C*-algebras and operatortheory, Harcourt Brace Javnovich,(1990).
[13] Ian F.Putnam, Lecture Notes on C*-algebras, 23 Sept, (2015).
[14] M Rieffel, 208 C*-algebras, Notes by Qiaochu Yuan, Spring (2013).
Anamika Sarma, Nilakshi Goswami, "Some Results on Positive Elements in the Tensor Product of C*-algebras," International Journal of Mathematics Trends and Technology (IJMTT), vol. 51, no. 3, pp. 237-243, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V51P530