Volume 51 | Number 6 | Year 2017 | Article Id. IJMTT-V51P553 | DOI : https://doi.org/10.14445/22315373/IJMTT-V51P553
In this paper we apply Lie's Classical Method to a (2+1) dimensional PDE equation to identify all possible solution for which this equation admits an exact solution and we obtain Lie algebra of infinitesimal symmetries is spanned by the six vector fields. We conclude that there is an infinite group of point transformations are invariant using invariant form method.We obtained local symmetry classifications.
[1] G. W. Bluman and J. D. Cole, The general similarity solution of the heat equation, J. Math. Mech. 18 (1969), 1035-1047.
[2] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York, 1989.
[3] George M. Murphy, Ordinary Differential Equations and their Solutions, D. Van Nostrand Company, Inc, New Jersey, 1960.
[4] P. J. Olver, Equivalance, Invariants and Symmetry (Berlin, Springer-Verlag, 1986).
[5] G. W. Bluman and S. C. Anco, Symmetries and Integration methods for Differential Equations (New York, Springer-Verlag, 2002).
[6] Olver, P. J. Applications of Lie Groups to Differential Equations, Springer-Verlag, New York 1986.
[7] Ibragimov, N. H. CRC Hand Book of Analysis of Differential Equations, Exact Solutions and Conservation Laws, CRC Press, New York, 1994 .
[8] Olver, P. J. Equivalence, Invariants and Symmetry, Cambridge University Press, Cambridge, 1996.
[9] Daniel Zwillinger, Handbook of Differential Equations, Academic Press, New York, 1992.
[10] Sachdev, P. L. A Compendium on Nonlinear Ordinary Differential Equations, John-Wiley & Sons Inc, New York, 1997.
[11] Sachdev, P. L. and Mayil Vaganan, B. Exact free surface ows for shallow water equations, Stud. Appl. Math. 94: 57 - 76 (1995).
[12] Tesdall, M. and Hunter, K. Self-similar solutions for weak shock re ection, Siam J. Appl. Math. 63: 42 (2002).
S. Padmasekaran S. Rajeswari, "Lie's Symmetries of (2+1)dim PDE," International Journal of Mathematics Trends and Technology (IJMTT), vol. 51, no. 6, pp. 381-390, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V51P553