Volume 51 | Number 6 | Year 2017 | Article Id. IJMTT-V51P553 | DOI : https://doi.org/10.14445/22315373/IJMTT-V51P553
S. Padmasekaran S. Rajeswari, "Lie's Symmetries of (2+1)dim PDE," International Journal of Mathematics Trends and Technology (IJMTT), vol. 51, no. 6, pp. 381-390, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V51P553
[1] G. W. Bluman and J. D. Cole, The general similarity solution of the heat equation, J. Math. Mech. 18 (1969), 1035-1047.
[2] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York, 1989.
[3] George M. Murphy, Ordinary Differential Equations and their Solutions, D. Van Nostrand Company, Inc, New Jersey, 1960.
[4] P. J. Olver, Equivalance, Invariants and Symmetry (Berlin, Springer-Verlag, 1986).
[5] G. W. Bluman and S. C. Anco, Symmetries and Integration methods for Differential Equations (New York, Springer-Verlag, 2002).
[6] Olver, P. J. Applications of Lie Groups to Differential Equations, Springer-Verlag, New York 1986.
[7] Ibragimov, N. H. CRC Hand Book of Analysis of Differential Equations, Exact Solutions and Conservation Laws, CRC Press, New York, 1994 .
[8] Olver, P. J. Equivalence, Invariants and Symmetry, Cambridge University Press, Cambridge, 1996.
[9] Daniel Zwillinger, Handbook of Differential Equations, Academic Press, New York, 1992.
[10] Sachdev, P. L. A Compendium on Nonlinear Ordinary Differential Equations, John-Wiley & Sons Inc, New York, 1997.
[11] Sachdev, P. L. and Mayil Vaganan, B. Exact free surface ows for shallow water equations, Stud. Appl. Math. 94: 57 - 76 (1995).
[12] Tesdall, M. and Hunter, K. Self-similar solutions for weak shock re ection, Siam J. Appl. Math. 63: 42 (2002).