Volume 52 | Number 1 | Year 2017 | Article Id. IJMTT-V52P510 | DOI : https://doi.org/10.14445/22315373/IJMTT-V52P510
S.Rubanraj, Sheena Mathew, "Fractional Modeling of Neurotransmitter Transport in the presence of Receptor and Transporter," International Journal of Mathematics Trends and Technology (IJMTT), vol. 52, no. 1, pp. 74-77, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V52P510
[1] K.L Magleby and C.F Stevens, A quantitative Description of End-Plate currents, Jl. Physiology, 223, 173-197,1972.
[2] Eccles J. C., The Physiology of Synapses, Springer-Verlag, Berlin, 1964.
[3] Katz., Nerve, muscle, and synapse, New York: McGraw-Hil,1966.
[4] M. V. L. Bennett., Synaptic transmission and neuronal interaction, Raven Press, New York, 1974.
[5] A.V.Chalyi and E.V.Zaitseva., Strange Attractor in kinetic model of Synaptic Transmission, Journal of physical StudiesV.11. No. 3, 2007.
[6] K. N. Leibovic and F. Andrietti. ,Analysis of a Model for Transmitter kinetics, Biological Cybernetics, 27,165-173,1977.
[7] Rihan et al., Dynamics of Tumor -Immune System with Fractional -Order, Journal of Tumor Research, Vol.2, 2016.
[8] A.A.Kilbas, H.M.Srivastava and J.J.Trujillo., Theory and applications of fractional differential equations, Elsevier, vol. 204, 2006.
[9] I.Podlubny. Fractional differential equations, Academic Press, San Diego, CA, 1999.
[10] Fahad Al Basirz A. M. Elaiw Dipak Keshx Priti Kumar Roy, Optimal Control of a Fractional-Order Enzyme Kinetic Model, Control and Cybernetics, vol. 44, 2015.
[11] Achala L.N. and Tessy Tom, Analytical and Numerical Study of a Mathematical Model of Neurotransmitter Transport in the Presence of Receptors and Transporters, Advances in Applied Mathematical Biosciences, Volume 2,