Volume 52 | Number 2 | Year 2017 | Article Id. IJMTT-V52P518 | DOI : https://doi.org/10.14445/22315373/IJMTT-V52P518
Methods for ordering fuzzy numbers play a vital role as decision criteria. In fuzzy literature there are many techniques for ordering fuzzy numbers. In practice, some special L-R fuzzy numbers, like triangular fuzzy number, the Gaussian fuzzy number, Cauchy fuzzy number and Trapezoidal fuzzy number are widely used various areas to deal with many vague information. Based on the recent developments in research of fuzzy number ranking,the paper extends thenew ranking approach to rank and orderGeneralized L-R Fuzzy Numbers. The purpose of this paper is to introduce a general frame work for comparing fuzzy sets with respect to fuzzy orderings in a gradual way. The approach proposed herein is relatively simple in terms of computational efforts and is efficient when ranking a large quantity of fuzzy numbers.
[1] S. Abbasbandy, B. Asady, “Ranking fuzzy numbers by
distance minimization”, Inf. Sci., 176, 2405-2416, 2006.
[2] Amit Kumar, Pushpinder Singh, ParmpreetKaur and
AmarpreetKaur, “A New Approach For Ranking of L-R
Type Generalized Fuzzy Numbers”,Tamsuki Oxford
Journal of Information and Mathematical Sciences, 27(2),
197-211, 2011.
[3] B. Asady, Zendehnam, “A Ranking fuzzy numbers by
distance minimization”, Appl. Math. Model, 31, 2589-
2598, 2007.
[4] F. N. Azman, L. A. Abdullah, “A New Centroids Method
for Ranking of trapezoidal Fuzzy Numbers”, Malays. J.
Fundam. Appl. Sci., doi:10.11113/jt.v68.1124, 2014.
[5] L. H. Chen, H. W. Lu, “An approximate approach for
ranking fuzzy numbers based on left and right
dominance”, Compt. Math. Appl., 41, 1589-1602, 2001.
[6] S.M. Chen and J. H. Chen, “Fuzzy risk analysis based on
ranking generalized fuzzy numbers with different heights
and different spreads”, Expert Systems with
Applications, 36 no.3, 6833-6842, 2009.
[7] C. H. Cheng, “A new approach for ranking fuzzy
numbers by distance method”, Fuzzy Sets Syst., 5, 131-
141, 2014.
[8] T. C. Chu, S. A. Wu, “Centroid ranking approach based
on fuzzy model”, Int. J. Mech. Aerosp. Ind. Mechatron.
Eng. 7, 531-537, 2013.
[9] Y. Deng, Z. Zhenfu, L. Qi, “Ranking fuzzy numbers with
an area method using radius of gyration”, Comput. Math.
Appl., 51, 1127-1136, 2006.
[10] D. Dubois, H. Prade, “Operations on fuzzy numbers”, Int.
J. Syst. Sci., 9, 613-626, 1978.
[11] Jos𝑒 A. Gonz𝑎 lez Campos and Ronald A. Manr𝑖 quez
Pe𝑛 afiel, “A Method for Ordering of LR-Type Fuzzy
Numbers: An Important Decision Criteria”, Axioms, 5,
22, doi:10.3390 / axioms 5030022, 2016.
[12] E. Lee, R. J. Li, “Comparision of fuzzy numbers based on
the probability measure of fuzzy events”, Comput. Math.
Appl., 15, 1988, 887-896.
[13] M. Modarres, S. Sadi-Nezhad, “Ranking fuzzy numbers
by preference ratio”, Fuzzy Sets Syst., 118, 429-436,
2001.
[14] S. Nasseri, F. Taleshian, Z. Alizadeh, J. Vahidi, “A new
method for ordering LR fuzzy numbers”, J. Math.
Comput. Sci., 4, 283-294, 2012.
[15] Y. Thorani Y, P. P. B. Rao, N. R. Shankar, “Ordering
generalized trapezoidal fuzzy numbers”, Int. J. contemp.
Math. Sci., 7, 555-573, 2012.
[16] Y. L. P. Thorani and N. Ravi Shankar, “Ranking
Generalized LR Fuzzy Numbers Using Area, Mode,
Spreads and Weights”, Applied Mathematical Sciences,
Vol.11, no. 39, 1943-1953, 2017.
[17] W. Wang, Z. Wang, “Total orderings defined on the set
of all fuzzy numbers”, Fuzzy Sets Syst., 5, 131-141, 2014.
[18] Y. M. Wang, J. B. Yang, D. L. Xu, K. S. Chin, “On the
centroids of fuzzy numbers”, Fuzzy Sets Syst., 157, 919-
926, 2006.
[19] L. A. Zadeh, “Fuzzy sets”, Information and
Control, 8 no. 3, 338-353, 1965.
G.Uthra, K.Thangavelu, R.M.Umamageswari, "Ordering L-R type Generalized Trapezoidal Fuzzy Numbers," International Journal of Mathematics Trends and Technology (IJMTT), vol. 52, no. 2, pp. 132-135, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V52P518