...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 52 | Number 4 | Year 2017 | Article Id. IJMTT-V52P534 | DOI : https://doi.org/10.14445/22315373/IJMTT-V52P534

Anticirculant Structured block weighing matrices from Williamson matrices


M.K.Singh, S.N. Topno, T. Paswan
Abstract

Recent advances in optical quantum computing created an interest in Hankel block Weighing matrices. This paper forwards a partial answer to a open problem posed by Arasu and his coworkers by constructing some infinite families of anticirculant block weighing matrices with additional structures.

Keywords
Williamson matrices, Weighing matrices, block matrices, Hadamard matrices.
References

[1] K.T. Arasu, S. Severini, E. Velten, Block Weighing Matrices, Cryptogr. Commun. (2013) 5: 201. doi:10.1007/s12095-013-0083-0
[2] H.J. Briegel, R. Raussendorf, Persistent en- tanglement in arrays of interacting particles,Phys. Rev. Lett. 86 910 (2001).
[3] R. Craigen and H. Kharaghani , Hadamard Matrices and Hadamard Designs in Handbook of Combinatorial designs (eds. C.J.Colbourn and J.H. Dinitz)2nd edition,Chapman and Hall/CRC, Boca Raton (2007).
[4] R. Craigen , and H. Kharaghani , Orthogo-nal Designs in Handbook of Combinatorial designs (eds. C.J.Colbourn and J.H. Dinitz)2nd edition,Chapman and Hall/CRC, Boca Raton(2007).
[5] S. T.Flammia, S. Severini ,Weighing matrices and optical quantum computing, J. Phys.A: Math. Theor. 42(2009)065302
[6] A.V. Geramita, J. Seberry, : Orthogonal Designs: Quadratic Forms and Hadamard Matrices. Marcel Decker, New York-Basel (1979).
[7] M. Hall, Jr., Combinatorial Theory , Wiley,New York 2nd edition,(1986).
[8] N. C. Menicucci, S. T. Flammia, and O. Pfister, One-way quantum computing in the optical frequency comb, Phys. Rev. Lett. 101 130501(2008).
[9] R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86 5188(2001).
[10] M.K.Singh and S.N. Topno, On the construction of Hadamard matrices of order 4n(n odd,n 3) with Hadamard blocks of order 4, Acta Ciencia Indica,vol XL M,No.3.309(2014).
[11] R. J. Turyn, An infnite class of Williamson Matrices , J.Combin. Theo. Ser. A. 1972.946.

Citation :

M.K.Singh, S.N. Topno, T. Paswan, "Anticirculant Structured block weighing matrices from Williamson matrices," International Journal of Mathematics Trends and Technology (IJMTT), vol. 52, no. 4, pp. 229-233, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V52P534

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved