Volume 52 | Number 5 | Year 2017 | Article Id. IJMTT-V52P542 | DOI : https://doi.org/10.14445/22315373/IJMTT-V52P542
This is a novel method of ascertaining the ranking of the Trapezoidal Intuitionistic Fuzzy Number (TIF) and Triangular Intuitionistic Fuzzy Number (TrIF) applying the mean of centroids. A comparative study is conducted about the proposed ranking and other methods of ranking for the Trapezoidal as well as Triangular Intuitionistic Fuzzy Numbers (TIF and TrIF).
[1] Abbasbandy, S., Hajjari, T.: A new approach for ranking oftrapezoidal fuzzy numbers. Comput. Math Appl. 57, 413–419,2009.
[2] Kumar, A., Kaur, M.: A ranking for intuitionistic fuzzynumbers and its application. J. Appl. Res. Technol. 11, 381– 396,2013.
[3] Arun Prakash, K., Suresh, M., Vengataasalam, S.: An solution intuitionistic fuzzy transportation. Asian J. Res. Soc..Human. 6, 2650– 2658,2016.
[4] Atanassov, K.T.: Intuitionistic fuzzy. Fuzzy Sets Syst. 20,87–96 ,1986.
[5] Delgado, M., Vila, M.A., Voxman, W.: On a canonical representation of numbers. Fuzzy Sets Syst. 93, 125–135 ,1998.
[6] Dubey, D., Mehra, A.: Linear with triangular intuitionistic fuzzy number,EUSFLAT-LFA, 563–569 ,2011.
[7] Grzegorzewski, P.: Distance and orderings in a family of intuitionisticfuzzy numbers. In proceedings of the third conferenceon fuzzy logic and technology (EUSFLAT 03), 223–227 ,2003.
[8]. Grzegorzewski, P.: The hamming distance between intuitionistic fuzzy sets. In Proceedings of the IFSA 2003 World Congress
[9] Li, D.F.: A ratio ranking method of triangular intuitionistic fuzzy numbers and its applications to MADM problems. Comput. Math Appl. 60, 1557–1570 (2010)
[10] Li, D.F., Nan J.X., Zhang M.J.: A ranking Method of triangular bnintuitionistic fuzzy numbers and applications to decision making, international Journal of Computation intelligence System3,522-530,2010.
[11] Mitchell, H.B.: Ranking - Intuitionistic Fuzzy numbers. Int. J. Uncert. Fuzz. Knowl. Based Syst. 12, 377–386 ,2004.
[12] Nagoorgani, A., Ponnalagu, K.: A new approach on solving intuitionistic fuzzy linear programming problem. Appl. Math.Sci. 6, 3467– 3474 ,2012.
[13] Nayagam, V.L.G., Venkateshwari, G., Sivaraman, G.: Modified ranking of intuitionistic fuzzy numbers. Notes on Intuitionistic Fuzzy Sets 17, 5–22 ,2011.
[14] Nayagam, V.L.G., Venkateshwari, G., Sivaraman, G.: Ranking of intuitionistic fuzzy numbers. Proceed. Int. Confer. Fuzzy Syst. 2008, Fuzz-IEEE 1971–1974 ,2008.
[15] Nehi, H.M.: A new ranking method for intuitionistic fuzzy numbers. Int. J. Fuzzy Syst. 12, 80–86 (2010)
[16] Parvathi, R., Malathi, C.: Arithmetic operations on symmetric trapezoidal intuitionistic fuzzy numbers. Int. J. Soft Comp. Eng.2, 268– 273 (2012)
[17] Peng, Z., Chen; A new method for ranking canonical intuitionistic fuzzy numbers. Proceed. Int. Confer. Inform. Eng. Appl.(IEA), 216, 609– 616 ,2013.
[18] Rezvani, S.: Ranking method of trapezoidal intuitionistic fuzzy numbers. Ann. Fuzzy Math. Inform. 10, 1–10 ,2013.
[19] Sagaya Roseline, S., Henry Amirtharaj, E.C.: A new method for ranking of intuitionistic fuzzy numbers. Indian J. Appl. Res. 3,1–2 ,2013.
[20] Salahshour, S., Shekari, G.A., Hakimzadeh, A.: A novel approach for ranking triangular intuitionistic fuzzy numbers. AWER Procedia Inform. Technol. Comp. Sci. 1, 442– 446, 2012.
[21] Suresh, M., Vengataasalam, S., Arun Prakash, K.: Solving intuitionistic fuzzy linear programming by ranking function. J. Intell. Fuzzy Syst. 27, 3081–3087, 2014.
[22] Suresh, M., Vengataasalam, S., Arun Prakash, K.: A method to solve fully intuitionistic fuzzy assignment problem. VSRD Int. J. Techn. Non-Techn. Res. 7, 71–74 2016.
[23] Seikh, M.R., Nayak, P.K., Pal, M.: Generalized triangular fuzzy numbers in intuitionistic fuzzy environment. Int. J. Eng. Res. Dev. 5, 8– 13 ,2012.
[24] Seikh, M.R., Nayak, P.K., Pal, M.: Notes on triangular intuitionistic fuzzy numbers. Int. J. Math. Operat. Res. 5, 446–465 ,2013.
[25] Wang, J., Zhang, Z.: Aggregation operators on Intuitionistic trapezoidal Fuzzy Numbers and its applications to Multi-Criteria Decision Making Problems. J. Syst. Eng. Elect. 20, 321–326 ,2009.
[26] Wang, X., Kerre, E.E.: Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets Syst. 118, 375–385 ,2001.
[27] Wei, C.P., Tang, X.: Possibility degree method for ranking intuitionistic fuzzy numbers, In the Proceed. Int. Confer. Web Intell. Intelligen Agent Technol. ,2010.
[28] Ye, J.: Multicriteria decision- making method based on a cosine similarity measure between trapezoidal fuzzy numbers. Int. J. Eng. Sci.Technol. 3, 272– 278 ,2011.
[29] Zadeh, A.: Fuzzy sets. Inf. Control 8, 338–353,1965
[30] Zhang,M. J.,Nan, J. X.: A compromise ratio ranking method of triangular intuitionistic fuzzy numbers and its application MADM problems. Iranian J. Fuzzy Syst. 10, 21–37 ,2013.
B. Pardha saradhi,M.V. Madhuri, N.Ravi Shankar, "Ordering Of Intuitionistic Fuzzy Numbers Using Centroid Of Centroids Of Intuitionistic Fuzzy Number," International Journal of Mathematics Trends and Technology (IJMTT), vol. 52, no. 5, pp. 276-285, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V52P542