Volume 52 | Number 5 | Year 2017 | Article Id. IJMTT-V52P547 | DOI : https://doi.org/10.14445/22315373/IJMTT-V52P547
Vidyadhar V. Nalawade, U. P. Dolhare, "Fixed Points and Mappings," International Journal of Mathematics Trends and Technology (IJMTT), vol. 52, no. 5, pp. 322-329, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V52P547
[1] Azam, A., Coincidence points of mappings and relations with applications. Fixed
Point Theroy and Applications 2012, 2012:50, DOI:10.1186/1687-1812-2012-50.
[2] Baxter, G., On fixed points of the composite of commuting functions. Proc. Amer.
Math. Soc. 15, 851-855 (1964).
[3] Block, H. D., Thielman, H. P., Commutative Polynomails. Quart. J. Math. Oxford
Ser.(2) 2, 241-243 (1951).
[4] Boyce, W. M., Commuting functions with no common fixed points, Abstract No.
67T-218. Notice Amer. Math. Soc. 14, 77-92 (1967).
[5] Cano, J., Common fixed points for a class of commuting mappings on an interval.
Proceedings of the American Mathematical Society vol. 86, No. 2, 336-338 (1982).
[6] Chu, S. C., Moyer, R. D., On continuous functions, commuting functions, and fixed
points, Fund. Math., 59, 91-95 (1966).
[7] Cohen, H., On fixed points of commuting functions. Proc. Amer. Math. Soc., 15
293-296 (1964).
[8] DeMarr, R., A common fixed point theorem for commuting mappings. Amer. Math.
Monthly 70, 535-537 (1963).
[9] DeMarr, R. Common fixed points for commuing contractions mappings, Pacific Journal of Mathematics Vol. 13 (4), 1139-1141 (1963).
[10] Folkman, J., H., On functions that commute with full functions. Proceedings of the
American Mathematical Society Vol. 17, No. 2, 383-386 (1966).
[11] Gupta, J., Sanodia, P. L., Qureshi, K., Gupta, A., On common fixed point theorem
in complete metric space. IOSR Journal of Mathematics Vol. 9, No. 5, 59-62 (2014).
[12] He, X., Song, M., Chen, D., Common fixed points for weak commutative mappings on
a multiplicative metric space. Fixed point theory and applications 2014(1):48, February 2014. DOI: 10.1186/1687-1812-2014-48.
[13] Jha, K., Common fixed point for weakly compatible maps in metric sapce. Kathamndu
university journal of science, engineering and technology Vol. 1 No. 4, 1-6 (2007).
[14] Jungck, G., Commuting mappings and fixed points. The American Mathematical
Monthly Vol. 83, No. 4, 261-263 (1973).
[15] Jungck, G., Commonn fixed points for compatible maps on ther unit interval. Proceedigns of the Americal Mathematiocal Society Vol. 115, No. 2, 495-499 (1992).
[16] Khamsi, M. A., Kirk, W. A., A Introduction to Metric Spaces and Fixed Point Theory.
John Wiley and Sons, Inc., ISBN 0-471-41825-0.
[17] Maxfield, J. E., Mourant, W. J., Common fixed points of commuting continuous
functions on the unit interval. Nederl. Akad. Wetensch. Proc. Ser. A 68 Indag. Math.
27 668-670 (1965).
[18] Popa, V., A common fixed point theorems of weakly commuting mapping. Publications De L’Institut Mathematique Nouvelle serie tome 47 (61), 132-136 1990.
[19] Sarwar, M., Zada, M. B., Erhan, I. M., Common fixed point theorems of integral type
contraction on metric spaces and its applications to system of functional equations.
Fixed Point Theory and Applications 2015(1) December 2015. DOI: 10.1186/s13663-
015-0466-3.
[20] Shrivastava, R., Dubey, R. K., Tiwari, P., Common fixed point theorems in compete
metric space. Advances in applied sciecne research Vol. 4, No. 6, 82-89 (2013).
[21] Singh, S. L., Hematulin, A., Pant, R., New coincedence and common fixed point
theorems. Applied General Topology Vol. 10 No. 1, 121-130 (2009).