Volume 52 | Number 5 | Year 2017 | Article Id. IJMTT-V52P550 | DOI : https://doi.org/10.14445/22315373/IJMTT-V52P550
K Madhukar, T R Ramamohan, "A Family of Nonlinear Problems in Particle Suspension Mechanics with Some Special Characteristics," International Journal of Mathematics Trends and Technology (IJMTT), vol. 52, no. 5, pp. 345-358, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V52P550
[1] Stokes G G, On the effect of internal friction of fluid on the motion of pendulums. Trans. Camb. Phil. Soc., 9, 8 – 106, 1851.
[2] Whitehead A N, Second approximations to viscous fluid motion. Quart. J. Math. 23, 143–152, 1889.
[3] Oseen C W, Uber die Stokessche Formel und Llber eine venvandte Aufgabe in der hydrodynamic. Ark. f. Mat. Astr. Och Fys., 6, 29, 1 – 20, 1910.
[4] Oseen, C. W., Uber den Gultigkeitsbereich der Stokesschen Widerstandsformel. Ark. f. Mat. Astr. och Fys. 9, 16, 1 – 16, 1913.
[5] Goldstein S, The Steady Flow of Viscous Fluid Past a Fixed Spherical Obstacle at Small Reynolds Numbers. Proc. R. Soc. Lond. A, 123, 225-235, 1929.
[6] Lagerstrom P A and Cole J D, Examples illustrating expansion procedures for the Navier - Stokes equations. J. Rational Mech. Anal., 4, 817-882, 1955.
[7] Proudman I and Pearson J R A, Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech., 237-262, 1957.
[8] Chester W and Breach D R, On the flow past a sphere at low Reynolds number. J. Fluid Mech., 37, part 4, 751 – 760, 1969.
[9] Bentwich M and Miloh T, The unsteady matched Stokes – Oseen solution for flow past a sphere. J. Fluid Mech., 88, 17 – 32, 1978.
[10] Basset A B, Treatises on Hydrodynamics. Deighton Bell, London, UK, 1888.
[11] Arminski L and Weinbaum S, Effect of waveform and duration of impulse on the solution to the Basset – Langevin equation. Phys. Fluids, 22, 404 – 411, 1979.
[12] Maxey M R and Riley J J, Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids, 26, 883 – 889, 1983.
[13] Lawrence C J and Weinbaum S, The force on an axisymmetric body in linearized, time – dependent motion. J. Fluid Mech., 171, 209 – 218, 1986.
[14] Lawrence C J and Weinbaum S, The unsteady force on a body at low Reynolds number; the axisymmetric motion of a spheroid. J. Fluid Mech., 189, 463 – 489, 1988.
[15] Gavze E, The accelerated motion of rigid bodies in non – steady Stokes flow. Int. J. Multiphase Flow, 16, 1, 153 – 166, 1990
[16] Sano T, Unsteady flow past a sphere at low Reynolds number. J. Fluid Mech., 112, 433 – 441, 1981.
[17] Lovalenti P M and Brady J F, The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number, J. Fluid Mech., 256, 561-605, 1993.
[18] Ramamohan T R, Shivakumara I S and Madhukar K, Numerical Simulation of the Dynamics of a Periodically Forced Spherical Particle in a Quiescent Newtonian Fluid at Low Reynolds Numbers. ICCS 2009, Part 1, LNCS-5544, 591-600, 2009.
[19] Ramamohan T R, Shivakumara I S and Madhukar K, The Dynamics and Rheology of a Dilute Suspensions of Periodically Forced Neutrally Buoyant Spherical Particles in a Quiescent Newtonian Fluid at Low Reynolds Numbers. Fluid Dynamics Research, Vol. 43, 045502 (21pp), 2011.
[20] Press W H, Teukolsky S A, Vetterling W T, Flannery B P. Numerical recipes in FORTRAN 77, second edition, The art of scientific computing. Cambridge University Press, 1992.