Volume 52 | Number 6 | Year 2017 | Article Id. IJMTT-V52P553 | DOI : https://doi.org/10.14445/22315373/IJMTT-V52P553
Let G be a graph with vertex set V = V (G) and edge set E = E(G) and let m = jE(G)j and n = jV (G)j. A one-to-one map f from V [ E onto the integers f1; 2; 3; :::;m + ng is called vertex magic total labeling if there is a constant k so that for every vertex u, f(u) + P f(uv) = k where the sum is over all vertices v adjacent to u. Let us call the sum of labels at vertex u the weight wf (u) of the vertex under labeling f; we require wf (u) = k for all u. The constant k is called the magic constant for f. Such a labeling is odd if f(V (G)) = f1; 3; 5; :::; 2n
[1] H.Enomoto, A.S.Llado, T.Nakamigawa G.Ringel, Super edge magic graphs, SUTJ.Math.2(1998) 105-109.
[2] J.A. Gallian, A dynamic survey of graph labeling , Electron J.Combinatorics 16 (2009) DS6.
[3] J.A. MacDougall, M.Miller, Slamin, W.D.Wallis, Vertex magic total labeling of graphs , Utilitas Math 61 (2002) 3-21.
[4] J.A.MacDougall, M.Miller,K.A.Sugeng, Super vertex magic total labelling of graphs , in: Proceedings of the 15 th Australian Workshop on Combinatorial Algorithms,2004,pp.222-229.
[5] G.Marimuthu, M.Balakrishnan, E-Super vertex magic labelings of graphs, Discrete Applied Mathematics , 160, 1766-1744, 2012.
[6] CT.Nagaraj, C.Y.Ponnappan, G.Prabakaran, Even vertex magic total labeling, International Journal of Pure and Applied Mathematics , Volume 115 , No. 9, (2017),363-375
[7] CT.Nagaraj, C.Y.Ponnappan, G.Prabakaran, Odd vertex magic total labeling of some graphs , Communicated.
[8] V.Swaminathan, P.Jeyanthi, Super vertex magic labeling , Indian J.Pure Appl.Math 34(6)(2003) 935-939.
[9] V.Swaminathan, P. Jeyanthi, On Super vertex magic labeling , J.Discrere Math.Sci.Cryptogr.8(2005) 217-224.
[10] W.D.Wallis, Magic Graphs, Birkhauser, Basel,2001.
CT. NAGARAJ, C.Y. PONNAPPAN, G. PRABAKARAN, "Odd Vertex Magic Total Labeling Of Trees," International Journal of Mathematics Trends and Technology (IJMTT), vol. 52, no. 6, pp. 374-379, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V52P553