Volume 52 | Number 6 | Year 2017 | Article Id. IJMTT-V52P553 | DOI : https://doi.org/10.14445/22315373/IJMTT-V52P553
CT. NAGARAJ, C.Y. PONNAPPAN, G. PRABAKARAN, "Odd Vertex Magic Total Labeling Of Trees," International Journal of Mathematics Trends and Technology (IJMTT), vol. 52, no. 6, pp. 374-379, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V52P553
Let G be a graph with vertex set V = V (G) and edge set E = E(G) and let m = jE(G)j and n = jV (G)j. A one-to-one map f from V [ E onto the integers f1; 2; 3; :::;m + ng is called vertex magic total labeling if there is a constant k so that for every vertex u, f(u) + P f(uv) = k where the sum is over all vertices v adjacent to u. Let us call the sum of labels at vertex u the weight wf (u) of the vertex under labeling f; we require wf (u) = k for all u. The constant k is called the magic constant for f. Such a labeling is odd if f(V (G)) = f1; 3; 5; :::; 2n
[1] H.Enomoto, A.S.Llado, T.Nakamigawa G.Ringel, Super edge magic graphs, SUTJ.Math.2(1998) 105-109.
[2] J.A. Gallian, A dynamic survey of graph labeling , Electron J.Combinatorics 16 (2009) DS6.
[3] J.A. MacDougall, M.Miller, Slamin, W.D.Wallis, Vertex magic total labeling of graphs , Utilitas Math 61 (2002) 3-21.
[4] J.A.MacDougall, M.Miller,K.A.Sugeng, Super vertex magic total labelling of graphs , in: Proceedings of the 15 th Australian Workshop on Combinatorial Algorithms,2004,pp.222-229.
[5] G.Marimuthu, M.Balakrishnan, E-Super vertex magic labelings of graphs, Discrete Applied Mathematics , 160, 1766-1744, 2012.
[6] CT.Nagaraj, C.Y.Ponnappan, G.Prabakaran, Even vertex magic total labeling, International Journal of Pure and Applied Mathematics , Volume 115 , No. 9, (2017),363-375
[7] CT.Nagaraj, C.Y.Ponnappan, G.Prabakaran, Odd vertex magic total labeling of some graphs , Communicated.
[8] V.Swaminathan, P.Jeyanthi, Super vertex magic labeling , Indian J.Pure Appl.Math 34(6)(2003) 935-939.
[9] V.Swaminathan, P. Jeyanthi, On Super vertex magic labeling , J.Discrere Math.Sci.Cryptogr.8(2005) 217-224.
[10] W.D.Wallis, Magic Graphs, Birkhauser, Basel,2001.