Volume 52 | Number 6 | Year 2017 | Article Id. IJMTT-V52P560 | DOI : https://doi.org/10.14445/22315373/IJMTT-V52P560
Muthukrishnan R, Vadivel M, Ramkumar N, "Gram–Schmidt Orthonormalization based Projection Depth," International Journal of Mathematics Trends and Technology (IJMTT), vol. 52, no. 6, pp. 430-434, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V52P560
[1] Ben Noble and James Daniel.: Applied Linear Algebra, 3rdedition. Prentice Hall, Englewood Cliffs, N.J., (1988).
[2] Donoho, D. L., and Gasko, M.: Breakdown properties of location estimates based on halfspace depth and projected outlyingness. The Annals of Statistics. 20, 1803–1827, (1992).
[3] Dyckerhoff, R,.:Data depthssatistiying the projection property. All emeinestatistischesArchiv, 88, 163-190, (2004).
[4] Hubert, M. and Van Driessen, K.: Fast and Robust Discriminant Analysis. Computaional Statistics and Data Analysis, 45,301,320, (2004).
[5] Johnson, R.A., and Wichern, D.W.: Applied multivariate analysis,3rd ed. Prentice Hall, Englewood Cliffs, New Jersey, (2007).
[6] Johnson, R.A., and Wichern, D.W.: Applied multivariate analysis, 9th ed. Prentice Hall, Englewood Cliffs, New Jersey, (2009).
[7] Liu, R.Y.: On a notion of data depth based on random simplices. The Annals of Statistics, 18, 191-219, (1990).
[8] Liu, R.Y.: Data depth and multivariate rank test. In: L1- Statistical Analysis and Related Methods, 279-294. North-Holland, Amsterdam, (1992).
[9] Liu, X.H., Zuo, Y.J., Wang, Z.Z.: Exactly computing bivariate projection depth contours and median. Preprint, (2011).
[10] Liu, X., and Zuo, Y.: Computing projection depth and its associated estimators. Stat.Comput., 24, 51-63, (2014).
[11] Rousseeuw, P.J., and Hubert, M.: Regression depth. Journal of the American Statistical Association, 94, 388-433, (1999).
[12] Stahel, W.A.: Breakdown of covariance estimators. Research Report 31, 1029-1036, (1981).
[13] Tukey, J.W.: Mathematics and the picturing of data. In: Proceedings of the International Congress of Mathematicians, pp. 523-531. Canadian Mathematical Congress, Montreal, (1975).
[14] Zuo, Y. Projection-based depth functions and associated medians. The Annals of Statistics, 31, 1460-1490, (2003).
[15] Zuo, Y.J.: Multidimensional trimming based on projection depth. The Annals of Statistics, 34, 2211-2251, (2006).
[16] Zuo, Y.J., Cui, H.J., He, X.M.: On the Stahel-Donoho estimators and depth – weighted means for multivariate data. The Annals of Statistics, 32, 189-218, (2004).
[17] Zuo, Y.J., and Lai, S.Y.: Exact computation of bivariate projection depth and Stahel-Donoho estimator. Computational Statistics & Data Analysis, 55, 1173-1179, (2011).
[18] Zuo, Y., and Serfling, R.: General notions of statistical depth function. The Annals of Statistics, 28, 461–482, (2000).