Volume 52 | Number 7 | Year 2017 | Article Id. IJMTT-V52P563 | DOI : https://doi.org/10.14445/22315373/IJMTT-V52P563
R. Apparsamy, Dr. N. Selvi, "Graphs Approach Hypermetric Inequalities via Topological Spaces," International Journal of Mathematics Trends and Technology (IJMTT), vol. 52, no. 7, pp. 445-448, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V52P563
1. Avis, D., and Grishukhin, V.P.: A Bound on the k-gonality of Facets of the Hyper- metric Cone and Related Complexity Problems, Computational Geometry: Theory and Applications 2 (1993) 241-254.
2. Avis, D., and Umemoto, J.: Stronger Linear Programming Relaxations of Max-Cut, Les cahiers du GERAD G-2002-48, September, 2002.
3. Deza, M. (Tylkin, M.E.): Realizablility of Distance Matrices in Unit Cubes (in Russian), Problem Kybernetiki 7 (1962) 31-42.
4. Deza, M., Grishukhin, V.P., and Laurent, M.: The Hypermetric Cone is Polyhedral, Combinatorical 13 (1993) 397-411.
5. Deza, M., and Laurent, M.: Geometry of Cuts and Metrics, Springer, 1997.
6. Garey M.R., Johnson D.S., Computers and Intractability, W.H.Freeman and Co 1979.
7. Helmberg, C., and Rendl, F.: Solving Quadratic (0,1)-Problems by Semi definite Programs and Cutting Planes, Math. Prog . 82 (1998) 291-315.
8. Laurent, M., and Poljak, S.: Gap Inequalities for the Gap Polytope, Europ. J. Combinatrics 17 (1996) 233-254.
9. Reed, B.: A Gentle Introduction to Semi-Definite Programming, in Perfect Graphs, ed. J. Alfons´ and B. Reed, Wiley, (2001).