Volume 52 | Number 7 | Year 2017 | Article Id. IJMTT-V52P569 | DOI : https://doi.org/10.14445/22315373/IJMTT-V52P569
In this paper the notion of Intuitionistic fuzzy L-ring ideals(left, right) is introduced and some anti-homomorphism of an intuitionstic fuzzy L- ring ideals(left, right) properties of image have been derived.
[1] N. Ajmal and K. V. Thomas, The Lattice of Fuzzy ideals of a ring, Fuzzy sets and Systems(1995), 371-379.
[2] N. Ajmal, Homomorphism of fuzzy Subgroups, Correspondents theorem and Fuzzy Sets and Systems 61(1994) 329-339.
[3] K. T. Atanassov, Intuitionistic fuzzy sets. Fuzzy sets and Systems, 20(1) (1986), 87-96.
[4] K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets. Fuzzy sets and Systems 61, (1994), 137-142.
[5] B. Banerjee and D. K. Basnet, Intuitionistic Fuzzy Subring and Ideals.
[6] G. Brikho, Lattice Theory, Published by American Mathematical Theory Providence Rhode Island (1967).
[7] K. Chandrasekharan Rao, and Swaminathan, Anti-Homomorphism in Near Rings, Jr of Inst. of maths and computer sciences (Math.Ser) Vol.2 (2006), 83-88.
[8] Fang Jin-Xuan, Fuzzy Homomorphism and Fuzzy isomorphism, Fuzzy Sets and Systems 63(1994) 237-242.
[9] A. A. M. Hassan, (2003) On Fuzzy Rings and Fuzzy Homomorphisms, The Journal of fuzzy Mathematics, Vol.7, No.2, 1999.
[10] K. Hur, Y. S. Ahn and DS. Kim The Lattice of Intuitionistic Fuzzy Ideals of a Ring, Journal of Appl.math and Computing vol 18 (2005) No, 12pp, 465-486.
[11] K. Hur, S. Y. Jang and H. W. Kang, Intuitionistic Fuzzy Ideals of a Ring, J. Korea Soc Math. Educ Ser. B: Pure Appl.Math., vol. 12,2005, No.3, 193-209.
[12] K. Hur, H. W. Kang, and H. K. Song, (2003) Intuitionistic Fuzzy Subgroups and Subrings, Honam Math J. 25 (1) : 19-41.
[13] K. Meena, and K. V. Thomas, (2011), Intuitionistic L-fuzzy Subrings, In- ternational Mathematical Forum, 6(52): 2561-2572.
[14] M. F. Marshdeh and A. R. Salleh, Intuitionistic Fuzzy rings, International Journal of Math Algebra 5(1) (2011) 37-47.
[15] M. Mullai, B. Chellappa Fuzzy L-filters, IOSR Journal of Mathematics, ISSN:2278-5728 vol.issue 3(jul-aug 2012)
[16] R. Muthuraj and C. Malarselvi, Homomorphism and Anti-homomorphism of Multi Fuzzy Ideals and Multi-Anti Fuzzy Ideals of a ring, IOSR Journals of Mathematics, Vol:11 Issue Ver.IV(Nov-Dec 2015), pp 83-94.
[17] R. Natrajan, S. Moganavalli, Fuzzy Sublattice Ordered Rings, International journals of contemporary Mathematical Sciences, Vol. 7, (2012). no.13, 625- 630.
[18] Olson D. M, On the Homomorphism for Hemirings, IJMMS, 1(1978), 439- 445.
[19] Palaniappan.N and K.Arjunan, The Homomorphism , Anti- Homomorphism of a Fuzzy and Anti-Fuzzy ideals, Varahmihir journal of mathematical sciences, vol.6 no.1(2006), 181-188.
[20] KR. Sasireka, KE. Sathappan and B. Chellapa Intuitionistic Fuzzy l-filters, International Journal of Mathematics and its applications, volume 4, Issue 2c(2016), 171-178.
[21] A. Sheikabdullah and K. Jeyaraman, Anti-homomorphism in fuzzy ideals of rings, Int.J. Contemp. Math. Sciences, Vol. 5, 2010, no. 55, 2717-2721.
[22] Rajesh Kumar, A Short Note on Homomorphisms and Fuzzy (Fuzzy Nor- mal) Subgroups, Fuzzy Sets and Systems 44 (1991) 165-168.
[23] G. J. Wang, Order-Homomorphism on fuzzes, Fuzzy sets and Systems 12 (1984), 281-288.
[24] LA. Zadeh, Fuzzy Sets, Inform and Control, 8(1965), 338-353.
KR. Sasireka, KE. Sathappan, "Anti-Homomorphism of an Intuitionistic Fuzzy L-Ring Ideals," International Journal of Mathematics Trends and Technology (IJMTT), vol. 52, no. 7, pp. 479-489, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V52P569