Volume 52 | Number 8 | Year 2017 | Article Id. IJMTT-V52P572 | DOI : https://doi.org/10.14445/22315373/IJMTT-V52P572

It is to be noted that to and tripled coincidence point, we do not employ completeness on space and not partially orderdness. Also the condition of continuity is not necessary for any mapping involved therein. An example is also given to validate our results. We extend and generalize several known results.

[1] M. Aamri and D. ElMoutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270 (1) (2002), 181-188.

[2] M. Abbas and B. E. Rhoades, Common fixed point theorems for hybrid pairs of occasionally weakly compatible mappings satisfying generalized contrac- tive condition of integral type, Fixed Point Theory Appl. Volume 2007, Article ID 54101, 9 pages.

[3] S. M. Alsulami & A. Alotaibi, Tripled coincidence points for monotone operators in partially ordered metric spaces. International Mathematical Forum 7 (2012), no. 37, 1811-1824.

[4] I. Altun, A common fixed point theorem for multivalued Círíc type map- pings with new type compatibility, An. St. Univ. Ovidius Constanta., 17(2), (2009), 19 - 26.

[5] H. Aydi, E. Karapinar & M. Postolache, Tripled coincidence point the- orems for weak contractions in partially ordered metric spaces. Fixed Point Theory Appl. doi:10.1186/1687-1812-2012-44 (2012).

[6] H. Aydi & E. Karapinar, Triple fixed points in ordered metric spaces. Bulletin of Mathematical Analysis and Applications 4 (2012), no. 1, 197-207.

[7] New Meir-Keeler type tripled fixed point theorems on partially ordered metric spaces. Hindawi publishing corporation Mathematical Problems in Engineering Volume 2012, Article ID 409872, 17 pages.

[8] H. Aydi, E. Karapinar & C. Vetro, Meir-Keeler type contractions for tripled
xed points. Acta Mathematica Scientia 6 (2012), 2119-2130.

[9] V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Analysis, 74(15), (2011), 4889 - 4897.

[10] V. Berinde & M. Borcut, Tripled coincidence theorems of contractive type mappings in partially ordered metric spaces. Applied Mathematics and Computation 218 (2012), no. 10, 5929-5936.

[11] T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in par- tially ordered metric spaces and applications, Nonlinear Anal. 65 (7) (2006), 1379-1393.

[12] P. Charoensawan, Tripled fixed points theorems of '-contractive mixed monotone operators on partially ordered metric spaces. Applied Mathematical Sciences 6 (2012), no. 105, 5229 - 5239.

[13] L. Ciric, B. Damjanovic, M. Jleli and B. Samet, Coupled fixed point theorems for generalized Mizoguchi-Takahashi contractions with applications, Fixed Point Theory Appl. 2012, 2012:51.

[14] B. Deshpande and S. Chouhan, Fixed points for two hybrid pairs of map- pings satisfying some weaker conditions on noncomplete metric spaces, South- east Asian Bull. Math. 35 (2011), 851-858.

[15] B. Deshpande and A. Handa, Common coupled Öxed point theorems
for two hybrid pairs of mappings under ' contraction, Hindawi Publishing
Corporation International Scholarly Research Notices Volume 2014, Article ID
608725, 10 pages

[16] B. Deshpande, S. Sharma, and A. Handa, Common coupled Öxed point
theorems for nonlinear contractive condition on intuitionistic fuzzy metric spaces
with application to integral equations, Journal of the Korean Society of Mathematical Education. Series B. The Pure and Applied Mathematics, (20)(3)(2013),
159ñ180.

[17] B. Deshpande, S. Sharma and A. Handa, Tripled Öxed point theorem
for hybrid pair of mappings under generalized nonlinear contraction, J. Korean
Soc. Math. Educ. Ser. B: Pure Appl. Math. Volume 21, Number 1 (February
2014), Pages 23-38.

[18] H. S. Ding, L. Li and S. Radenovic, Coupled coincidence point theorems
for generalized nonlinear contraction in partially ordered metric spaces, Fixed
Point Theory Appl. 2012, 2012:96.

[19] M. E. Gordji, H. Baghani and G. H. Kim, Common Öxed point theorems
for ( ; ')weak nonlinear contraction in partially ordered sets, Fixed Point
Theory Appl. 2012, 2012:62.

[20] T. Kamran, Coincidence and Öxed points for hybrid strict contractions,
J. Math. Anal. Appl. 299 (1) (2004), 235ñ241.

[21] V. Lakshmikantham and L. Ciric, Coupled Öxed point theorems for
nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70
(12) (2009), 4341-4349.

[22] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued
mappings on complete metric spaces, J. Math. Anal. Appl., 141 (1989), 177 -
188.

[23] S. B. Jr. Nadler, Multivalued contraction mappings, PaciÖc J. Math.,
XXX (1969), 475 - 488.

[24] K. P. R. Rao, G. N. V. Kishore and K. Tas, A unique common triple
Öxed point theorem for hybrid pair of mappings, Abstract and Applied Analysis,
Volume 2012, Article ID 750403, 9 pages, doi:10.1155/2012/750403.

[25] B. E. Rhoades, A Öxed point theorem for a multivalued non - self mapping, Comment. Math. Univ. Carolin., 37 (1996), 401 - 404.

[26] B. Samet and C. Vetro, Coupled Öxed point theorems for multivalued
nonlinear contraction mappings in partially ordered metric spaces, Nonlinear
Analysis, 74 (2011), 4260 - 4268.

[27] Wei - Shih Du, Some generalizations of Mizoguchi - Takahashiís Öxed
point theorem, Int. J. Contemp. Math. Sci., 3 (2008), 1283 - 1288.

Bhavana Deshpande, Shamim Ahmad Thoker, Riyaz Ahmad Shah, "Common tripled Öxed point
results for hybrid pair of
mappings under new condition," *International Journal of Mathematics Trends and Technology (IJMTT)*, vol. 52, no. 8, pp. 506-520, 2017. *Crossref*, https://doi.org/10.14445/22315373/IJMTT-V52P572